Suppr超能文献

估计感觉运动同步数据的分布:一种贝叶斯层次建模方法。

Estimating the distribution of sensorimotor synchronization data: A Bayesian hierarchical modeling approach.

作者信息

Bååth Rasmus

机构信息

Department of Philosophy, Lund University, Box 192, 22100, Lund, Sweden.

出版信息

Behav Res Methods. 2016 Jun;48(2):463-74. doi: 10.3758/s13428-015-0591-2.

Abstract

The sensorimotor synchronization paradigm is used when studying the coordination of rhythmic motor responses with a pacing stimulus and is an important paradigm in the study of human timing and time perception. Two measures of performance frequently calculated using sensorimotor synchronization data are the average offset and variability of the stimulus-to-response asynchronies-the offsets between the stimuli and the motor responses. Here it is shown that assuming that asynchronies are normally distributed when estimating these measures can result in considerable underestimation of both the average offset and variability. This is due to a tendency for the distribution of the asynchronies to be bimodal and left skewed when the interstimulus interval is longer than 2 s. It is argued that (1) this asymmetry is the result of the distribution of the asynchronies being a mixture of two types of responses-predictive and reactive-and (2) the main interest in a sensorimotor synchronization study is the predictive responses. A Bayesian hierarchical modeling approach is proposed in which sensorimotor synchronization data are modeled as coming from a right-censored normal distribution that effectively separates the predictive responses from the reactive responses. Evaluation using both simulated data and experimental data from a study by Repp and Doggett (2007) showed that the proposed approach produces more precise estimates of the average offset and variability, with considerably less underestimation.

摘要

当研究有节奏的运动反应与起搏刺激的协调性时,会使用感觉运动同步范式,它是人类计时和时间感知研究中的一个重要范式。使用感觉运动同步数据经常计算的两个性能指标是刺激与反应异步性的平均偏移和变异性,即刺激与运动反应之间的偏移。本文表明,在估计这些指标时假设异步性呈正态分布会导致平均偏移和变异性都被严重低估。这是因为当刺激间隔长于2秒时,异步性分布倾向于双峰且左偏。有人认为:(1)这种不对称性是异步性分布为预测性和反应性两种反应类型混合的结果;(2)感觉运动同步研究的主要关注点是预测性反应。本文提出了一种贝叶斯层次建模方法,其中感觉运动同步数据被建模为来自右删失正态分布,该分布有效地将预测性反应与反应性反应区分开来。使用模拟数据和来自Repp和Doggett(2007年)一项研究的实验数据进行评估表明,所提出的方法能更精确地估计平均偏移和变异性,且低估程度要小得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验