Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
Evolutionary Ecology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium.
Sci Total Environ. 2015 Sep 1;526:233-42. doi: 10.1016/j.scitotenv.2015.04.064.
Metal oxide nanoparticles are increasingly being produced and will inevitably end up in the aquatic environment. Up till now, most papers have studied individual nanoparticle effects. However, the implementation of these data into a risk assessment tool, needed to characterise their risk to the aquatic environment, is still largely lacking. Therefore, aquatic species sensitivity distributions (SSDs) were constructed for ZnO and CuO nanoparticles and 5% hazard concentrations (HC5) were calculated in this study. The effect of individual nanoparticles on these SSDs was estimated by comparison with bulk SSDs. Additionally, the effect of nanoparticle dynamics (aggregation and dissolution) was considered by evaluating the effect of aggregate size on the toxicity, by estimation of the dissolved fraction and comparison with SSDs for ZnCl2 and CuCl2 inorganic salt. Bacteria, protozoa, yeast, rotifera, algae, nematoda, crustacea, hexapoda, fish and amphibia species were included in the analysis. The results show that algae (Zn) and crustacea (Zn, Cu) are the most sensitive species when exposed to the chemicals. Similar acute sensitivity distributions were obtained for ZnO nanoparticles (HC5: 0.06 with 90% confidence interval: 0.03-0.15 mg Zn/l; 43 data points), bulk ZnO (HC5: 0.06 with CI: 0.03-0.20 mg Zn/l; 23 dps) and ZnCl2 (HC5: 0.03 with CI: 0.02-0.05 mg Zn/l; 261 dps). CuO nanoparticles (HC5: 0.15 with CI: 0.05-0.47 mg Cu/l; 43 dps) are more toxic than the bulk materials (HC5: 6.19 with CI: 2.15-38.11 mg Cu/l; 12 dps) but less toxic than CuCl2 (HC5: 0.009 with CI: 0.007-0.012 mg Cu/l; 594 dps) to aquatic species. However, the combined dissolution and SSD results indicate that the toxicity of these nanoparticles is mainly caused by dissolved metal ions. Based on the available information, no current risk of these nanoparticles to the aquatic environment is expected.
金属氧化物纳米颗粒的产量日益增加,最终不可避免地会进入水生环境。到目前为止,大多数论文都研究了单个纳米颗粒的影响。然而,将这些数据应用于风险评估工具,以描述它们对水生环境的风险,在很大程度上仍然缺乏。因此,本研究构建了 ZnO 和 CuO 纳米颗粒的水生物种敏感性分布(SSD),并计算了 5%危害浓度(HC5)。通过与体相 SSD 进行比较,估算了单个纳米颗粒对这些 SSD 的影响。此外,通过评估团聚体大小对毒性的影响,考虑了纳米颗粒动力学(聚集和溶解)的影响,通过估算溶解分数并与 ZnCl2 和 CuCl2 无机盐的 SSD 进行比较。分析中包括细菌、原生动物、酵母、轮虫、藻类、线虫、甲壳类、六足类、鱼类和两栖类物种。结果表明,暴露于这些化学物质时,藻类(Zn)和甲壳类(Zn、Cu)是最敏感的物种。获得了相似的急性敏感性分布,对于 ZnO 纳米颗粒(HC5:置信区间 90%为 0.06,范围为 0.03-0.15 mg Zn/l;43 个数据点)、体相 ZnO(HC5:置信区间 90%为 0.06,范围为 0.03-0.20 mg Zn/l;23 个数据点)和 ZnCl2(HC5:置信区间 90%为 0.03,范围为 0.02-0.05 mg Zn/l;261 个数据点)。CuO 纳米颗粒(HC5:置信区间 90%为 0.15,范围为 0.05-0.47 mg Cu/l;43 个数据点)比体相材料(HC5:置信区间 90%为 6.19,范围为 2.15-38.11 mg Cu/l;12 个数据点)更有毒,但比 CuCl2(HC5:置信区间 90%为 0.009,范围为 0.007-0.012 mg Cu/l;594 个数据点)对水生物种的毒性更小。然而,结合溶解和 SSD 结果表明,这些纳米颗粒的毒性主要是由溶解的金属离子引起的。根据现有信息,预计这些纳米颗粒目前不会对水生环境造成风险。