Suppr超能文献

金属工程纳米材料危害评估中计算毒理学应用的当前知识

Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.

作者信息

Chen Guangchao, Peijnenburg Willie, Xiao Yinlong, Vijver Martina G

机构信息

Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, The Netherlands.

Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA Bilthoven, The Netherlands.

出版信息

Int J Mol Sci. 2017 Jul 12;18(7):1504. doi: 10.3390/ijms18071504.

Abstract

As listed by the European Chemicals Agency, the three elements in evaluating the hazards of engineered nanomaterials (ENMs) include the integration and evaluation of toxicity data, categorization and labeling of ENMs, and derivation of hazard threshold levels for human health and the environment. Assessing the hazards of ENMs solely based on laboratory tests is time-consuming, resource intensive, and constrained by ethical considerations. The adoption of computational toxicology into this task has recently become a priority. Alternative approaches such as (quantitative) structure-activity relationships ((Q)SAR) and read-across are of significant help in predicting nanotoxicity and filling data gaps, and in classifying the hazards of ENMs to individual species. Thereupon, the species sensitivity distribution (SSD) approach is able to serve the establishment of ENM hazard thresholds sufficiently protecting the ecosystem. This article critically reviews the current knowledge on the development of in silico models in predicting and classifying the hazard of metallic ENMs, and the development of SSDs for metallic ENMs. Further discussion includes the significance of well-curated experimental datasets and the interpretation of toxicity mechanisms of metallic ENMs based on reported models. An outlook is also given on future directions of research in this frontier.

摘要

根据欧洲化学品管理局的规定,评估工程纳米材料(ENM)危害的三个要素包括毒性数据的整合与评估、ENM的分类与标签以及推导对人类健康和环境的危害阈值水平。仅基于实验室测试来评估ENM的危害既耗时、资源密集,又受到伦理考量的限制。最近,将计算毒理学应用于这项任务已成为优先事项。诸如(定量)构效关系((Q)SAR)和类推法等替代方法在预测纳米毒性、填补数据空白以及对ENM对单个物种的危害进行分类方面有很大帮助。因此,物种敏感度分布(SSD)方法能够为建立充分保护生态系统的ENM危害阈值提供支持。本文批判性地综述了有关用于预测和分类金属ENM危害的计算机模拟模型的发展以及金属ENM的SSD发展的现有知识。进一步的讨论包括精心整理的实验数据集的重要性以及基于报告模型对金属ENM毒性机制的解释。此外,还展望了这一前沿领域未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffa3/5535994/67c469b79fbf/ijms-18-01504-g001.jpg

相似文献

2
In silico analysis of nanomaterials hazard and risk.
Acc Chem Res. 2013 Mar 19;46(3):802-12. doi: 10.1021/ar300049e. Epub 2012 Nov 8.
3
Species sensitivity distributions for engineered nanomaterials.
Environ Sci Technol. 2015 May 5;49(9):5753-9. doi: 10.1021/acs.est.5b00081. Epub 2015 Apr 24.
6
Current situation on the availability of nanostructure-biological activity data.
SAR QSAR Environ Res. 2015;26(2):79-94. doi: 10.1080/1062936X.2014.993702. Epub 2015 Jan 22.
7
Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.
J Food Drug Anal. 2014 Mar;22(1):128-146. doi: 10.1016/j.jfda.2014.01.011. Epub 2014 Feb 4.
8
Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
Nanotoxicology. 2019 Apr;13(3):392-428. doi: 10.1080/17435390.2018.1530391. Epub 2019 Feb 14.

引用本文的文献

1
Computational Nanotoxicology Models for Environmental Risk Assessment of Engineered Nanomaterials.
Nanomaterials (Basel). 2024 Jan 10;14(2):155. doi: 10.3390/nano14020155.
2
Review and Prospects on the Ecotoxicity of Mixtures of Nanoparticles and Hybrid Nanomaterials.
Environ Sci Technol. 2022 Nov 15;56(22):15238-15250. doi: 10.1021/acs.est.2c03333. Epub 2022 Oct 5.
3
Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment.
Nanomaterials (Basel). 2022 Apr 14;12(8):1346. doi: 10.3390/nano12081346.
5
Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment.
Ecotoxicol Environ Saf. 2021 Aug;219:112357. doi: 10.1016/j.ecoenv.2021.112357. Epub 2021 May 19.
6
Risk Assessment and Risk Minimization in Nanomedicine: A Need for Predictive, Alternative, and 3Rs Strategies.
Front Pharmacol. 2018 Mar 13;9:228. doi: 10.3389/fphar.2018.00228. eCollection 2018.
7
Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes.
Front Physiol. 2018 Mar 29;9:295. doi: 10.3389/fphys.2018.00295. eCollection 2018.

本文引用的文献

3
Parametrization of nanoparticles: development of full-particle nanodescriptors.
Nanoscale. 2016 Sep 15;8(36):16243-16250. doi: 10.1039/c6nr04376c.
4
Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs.
Nanotoxicology. 2016 Nov;10(9):1207-14. doi: 10.1080/17435390.2016.1202352. Epub 2016 Jul 11.
5
Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.
Environ Toxicol Chem. 2016 Dec;35(12):2958-2967. doi: 10.1002/etc.3476. Epub 2016 Jul 26.
6
In silico toxicology: computational methods for the prediction of chemical toxicity.
Wiley Interdiscip Rev Comput Mol Sci. 2016 Mar;6(2):147-172. doi: 10.1002/wcms.1240. Epub 2016 Jan 6.
7
Dose metrics assessment for differently shaped and sized metal-based nanoparticles.
Environ Toxicol Chem. 2016 Oct;35(10):2466-2473. doi: 10.1002/etc.3414. Epub 2016 Jun 21.
8
Probabilistic modeling of the flows and environmental risks of nano-silica.
Sci Total Environ. 2016 Mar 1;545-546:67-76. doi: 10.1016/j.scitotenv.2015.12.100. Epub 2015 Dec 31.
10
Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice.
Regul Toxicol Pharmacol. 2016 Apr;76:234-61. doi: 10.1016/j.yrtph.2015.11.020. Epub 2015 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验