Byers Blake, Lee Hyun Joo, Liu Jia, Weitz Andrew J, Lin Peter, Zhang Pengbo, Shcheglovitov Aleksandr, Dolmetsch Ricardo, Pera Renee Reijo, Lee Jin Hyung
Department of Bioengineering, Stanford University, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Google Ventures, Mountain View, CA 94043, USA.
Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA.
Neuroimage. 2015 Jul 1;114:328-37. doi: 10.1016/j.neuroimage.2015.03.079. Epub 2015 Apr 25.
Despite the potential of stem cell-derived neural transplants for treating intractable neurological diseases, the global effects of a transplant's electrical activity on host circuitry have never been measured directly, preventing the systematic optimization of such therapies. Here, we overcome this problem by combining optogenetics, stem cell biology, and neuroimaging to directly map stem cell-driven neural circuit formation in vivo. We engineered human induced pluripotent stem cells (iPSCs) to express channelrhodopsin-2 and transplanted resulting neurons to striatum of rats. To non-invasively visualize the function of newly formed circuits, we performed high-field functional magnetic resonance imaging (fMRI) during selective stimulation of transplanted cells. fMRI successfully detected local and remote neural activity, enabling the global graft-host neural circuit function to be assessed. These results demonstrate the potential of a novel neuroimaging-based platform that can be used to identify how a graft's electrical activity influences the brain network in vivo.
尽管干细胞衍生的神经移植在治疗难治性神经疾病方面具有潜力,但移植的电活动对宿主神经回路的整体影响从未被直接测量过,这阻碍了此类疗法的系统优化。在这里,我们通过结合光遗传学、干细胞生物学和神经成像技术,直接绘制体内干细胞驱动的神经回路形成图,从而克服了这一问题。我们对人类诱导多能干细胞(iPSC)进行基因改造,使其表达通道视紫红质-2,并将产生的神经元移植到大鼠纹状体中。为了无创地可视化新形成回路的功能,我们在选择性刺激移植细胞的过程中进行了高场功能磁共振成像(fMRI)。fMRI成功检测到局部和远程神经活动,从而能够评估移植体与宿主之间的整体神经回路功能。这些结果证明了一种基于神经成像的新型平台的潜力,该平台可用于确定移植体的电活动如何在体内影响脑网络。