McCafferty Sean J, Schwiegerling Jim T
Intuor Technologies - CEO; Arizona Eye Consultants - Partner; University of Arizona Department of Ophthalmology Clinical Assistant Professor; University of Arizona College of Optical Science.
Jim Schwiegerling affiliations: University of Arizona College of Optical Science - Professor; University of Arizona Department of Ophthalmology.
Transl Vis Sci Technol. 2015 Apr 28;4(2):17. doi: 10.1167/tvst.4.2.17. eCollection 2015 Apr.
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface.
The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate.
The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus.
The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens.
The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
提出一种用于开发和评估具有可变形界面的可调节人工晶状体的分析方法。
介绍了挤压凝胶界面人工晶状体的下一代设计。基于先前在体内已获验证的类似设计制作了一个原型,并对其进行了测试,测量了驱动力、晶状体屈光力、界面轮廓、光学传递函数和视觉斯特列尔比。使用经过原型验证的数学模型来优化光学和机械设计参数,以最大化图像质量并最小化调节所需的力。
该原型晶状体在可用的生理调节力作用下产生了足够的图像质量。基于该原型的迭代数学建模通过最大允许的凝胶厚度与挤压直径之比、界面处最大可行的折射率变化以及泊松比和杨氏模量方面最小的凝胶材料特性,实现了光学和机械性能的最大化。
该设计原型表现良好。它在人眼的生理限制范围内运行,包括利用眼睛自然聚焦反馈实现完全调节幅度所需的力,同时在可用空间内保持图像质量。优化光学和机械性能的参数被确定为那些能使非球面性和驱动压力最小化的参数。本文概述的设计参数可作为模板,以最大化可变形界面人工晶状体的性能。
本文结合了生物力学、光学科学和眼科学的多学科基础科学方法,以优化适合初步动物试验的人工晶状体设计。