Olarescu Nicoleta C, Berryman Darlene E, Householder Lara A, Lubbers Ellen R, List Edward O, Benencia Fabian, Kopchick John J, Bollerslev Jens
Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA
Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA Section of Specialized EndocrinologyDepartment of Endocrinology, Oslo University Hospital, Rikshospitalet, PO Box 4950, N-0424 Oslo, NorwayFaculty of MedicineUniversity of Oslo, Oslo, NorwayEdison Biotechnology InstituteOhio University, Athens, Ohio, USAHeritage College of Osteopathic MedicineOhio University, Athens, Ohio, USA.
J Endocrinol. 2015 Jul;226(1):13-23. doi: 10.1530/JOE-15-0012. Epub 2015 May 5.
GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of the present study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor knockout (GHRKO), bovine GH transgenic (bGH) mice, and wild-type littermate control (WT) mice. AT-MSCs from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (Pdgfrα+ Sca1+ Cd45- Ter119- cells). Their in vitro adipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identical in vitro conditions, adipogenic differentiation of AT-MSCs was only achieved in the sc depot, and not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells as compared to sc-WT cells. Axin2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes, which suggests that activation of this pathway may be responsible for the decreased adipogenesis. Thus, the present study demonstrates that (i) adipose tissue in mice has a well-defined population of Pdgfrα+ Sca1+ MSCs; (ii) the differentiation capacity of AT-MSCs varies from depot to depot regardless of GH genotype; (iii) the lack of GH action increases adipogenesis in the sc depot; and iv) activation of the Wnt/β-catenin pathway might mediate the GH effect on AT-MSCs. Taken together, the present results suggest that GH diminishes fat mass in part by altering adipogenesis of MSCs.
生长激素(GH)影响脂肪细胞分化,但已有研究描述了其刺激和抑制两种作用。脂肪组织来源的间充质干细胞(AT-MSCs)具有多能性,能够分化为脂肪细胞以及其他细胞。经典的Wnt/β-连环蛋白信号通路激活会损害脂肪生成。本研究的目的是利用从雄性生长激素受体敲除(GHRKO)小鼠、牛生长激素转基因(bGH)小鼠以及野生型同窝对照(WT)小鼠分离的细胞,阐明生长激素对AT-MSC脂肪生成的作用。通过流式细胞术(Pdgfrα+ Sca1+ Cd45- Ter119-细胞)鉴定并分离来自皮下(sc)、附睾(epi)和肠系膜(mes)脂肪组织库的AT-MSCs。通过细胞形态学和实时逆转录聚合酶链反应(RT-PCR)测定其体外脂肪生成分化能力。在相同的体外条件下,AT-MSCs的脂肪生成分化仅在sc脂肪组织库中实现,而在epi和mes脂肪组织库中未实现。值得注意的是,与sc-WT细胞相比,我们观察到从sc-GHRKO分离的细胞分化增加,而sc-bGH细胞的分化受损。Axin2是Wnt/β-连环蛋白激活的标志物,在成熟的sc-bGH脂肪细胞中增加,这表明该信号通路的激活可能是脂肪生成减少的原因。因此,本研究表明:(i)小鼠脂肪组织中有明确的Pdgfrα+ Sca1+间充质干细胞群体;(ii)无论生长激素基因型如何,AT-MSCs的分化能力因脂肪组织库而异;(iii)生长激素作用的缺乏会增加sc脂肪组织库中的脂肪生成;以及(iv)Wnt/β-连环蛋白信号通路的激活可能介导生长激素对AT-MSCs的作用。综上所述,目前的结果表明生长激素部分通过改变间充质干细胞的脂肪生成来减少脂肪量。