Barquero-Calvo Elías, Mora-Cartín Ricardo, Arce-Gorvel Vilma, de Diego Juana L, Chacón-Díaz Carlos, Chaves-Olarte Esteban, Guzmán-Verri Caterina, Buret Andre G, Gorvel Jean-Pierre, Moreno Edgardo
Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica; Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica.
Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
PLoS Pathog. 2015 May 6;11(5):e1004853. doi: 10.1371/journal.ppat.1004853. eCollection 2015 May.
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.
大多数细菌感染会诱导多形核中性粒细胞(PMN)活化,增强其杀菌功能,并促进这些白细胞长期存活。流产布鲁氏菌是一种隐匿性病原体,可逃避先天免疫,几乎不激活PMN,并抵抗这些吞噬细胞的杀伤机制。布鲁氏菌病期间观察到的有趣临床症状是靶器官中感染布鲁氏菌的PMN数量少,以及部分患者出现中性粒细胞减少;这些特征值得进一步关注。在此,我们证明流产布鲁氏菌以剂量依赖性和细胞特异性方式过早杀死人PMN。PMN的死亡与液泡内细胞内布鲁氏菌脂多糖(Br-LPS)的释放同时发生。该分子及其脂质A可重现PMN的过早细胞死亡,这一现象与促炎细胞因子的低产生有关。阻断CD14而非TLR4可防止Br-LPS诱导的细胞死亡。PMN细胞死亡不同于坏死、中性粒细胞胞外陷阱形成(NETosis)和经典凋亡。PMN细胞死亡机制与NADPH氧化酶的激活以及ROS介质适度但持续增加有关。这些效应器会产生DNA损伤,募集检查点激酶1、半胱天冬酶5以及少量的半胱天冬酶4、RIP1和Ca++释放。流产布鲁氏菌感染或Br-LPS处理几乎不会刺激PMN产生IL-1β。同样,抑制半胱天冬酶1并不会阻碍Br-LPS诱导的PMN细胞死亡,这表明炎性小体途径未参与其中。尽管观察到半胱天冬酶8和9的激活,但它们似乎并未参与初始触发机制,因为抑制这些半胱天冬酶几乎不会阻止PMN细胞死亡。这些发现提示了慢性布鲁氏菌病中性粒细胞减少的机制,并揭示了一种新的布鲁氏菌与宿主的相互作用,通过这种相互作用流产布鲁氏菌能够阻碍PMN的先天功能。