Suppr超能文献

一种控制小鼠皮层状态、可塑性及感觉反应增益的神经回路。

A Neural Circuit That Controls Cortical State, Plasticity, and the Gain of Sensory Responses in Mouse.

作者信息

Stryker Michael P

机构信息

Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, California 94143-0444

出版信息

Cold Spring Harb Symp Quant Biol. 2014;79:1-9. doi: 10.1101/sqb.2014.79.024927. Epub 2015 May 6.

Abstract

Neurons in the visual cortex were first found to be exquisitely selective for particular properties of visual stimuli in anesthetized animals, including mice. Studies of alert mice in an apparatus that allowed them to stand or run revealed that locomotion causes a change in cortical state that dramatically increases the magnitude of responses in neurons of the visual cortex without altering selectivity, effectively changing the gain of sensory responses. Locomotion also dramatically enhances adult plasticity in the recovery from long-term visual deprivation. We have studied the elements and operation of the neural circuit responsible for the enhancement of activity and shown that it enhances plasticity even in mice not free to run. The circuit consists of projections ascending from the midbrain locomotor region (MLR) to the basal forebrain, activating cholinergic and perhaps other projections to excite inhibitory interneurons expressing vasoactive intestinal peptide (VIP) in the visual cortex. VIP cells activated by locomotion inhibit interneurons that express somatostatin (SST), thereby disinhibiting the excitatory principal neurons and allowing them to respond more strongly to effective visual stimuli. These findings reveal in alert animals how the ascending reticular activating system described in anesthetized animals 50 years ago operates to control cortical state.

摘要

视觉皮层中的神经元最初是在包括小鼠在内的麻醉动物身上被发现对视觉刺激的特定属性具有极高的选择性。在一种允许警觉小鼠站立或奔跑的装置中对其进行的研究表明,运动可导致皮层状态发生变化,这种变化会显著增加视觉皮层神经元的反应幅度,而不改变其选择性,实际上是改变了感觉反应的增益。运动还能显著增强成年小鼠从长期视觉剥夺中恢复时的可塑性。我们研究了负责增强活动的神经回路的组成部分和运作方式,并表明即使在无法自由奔跑的小鼠中,该回路也能增强可塑性。该回路由从中脑运动区(MLR)向上投射到基底前脑的神经纤维组成,激活胆碱能及可能的其他投射,以兴奋视觉皮层中表达血管活性肠肽(VIP)的抑制性中间神经元。运动激活的VIP细胞抑制表达生长抑素(SST)的中间神经元,从而解除对兴奋性主神经元的抑制,使其对有效的视觉刺激产生更强的反应。这些发现揭示了在警觉动物中,50年前在麻醉动物中描述的上行网状激活系统是如何运作以控制皮层状态的。

相似文献

1
A Neural Circuit That Controls Cortical State, Plasticity, and the Gain of Sensory Responses in Mouse.
Cold Spring Harb Symp Quant Biol. 2014;79:1-9. doi: 10.1101/sqb.2014.79.024927. Epub 2015 May 6.
2
A cortical disinhibitory circuit for enhancing adult plasticity.
Elife. 2015 Jan 27;4:e05558. doi: 10.7554/eLife.05558.
3
Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion.
Neuron. 2014 Jul 16;83(2):455-466. doi: 10.1016/j.neuron.2014.06.031.
6
Cortical Control of Spatial Resolution by VIP+ Interneurons.
J Neurosci. 2016 Nov 9;36(45):11498-11509. doi: 10.1523/JNEUROSCI.1920-16.2016.
7
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1.
J Neurosci. 2017 Apr 5;37(14):3764-3775. doi: 10.1523/JNEUROSCI.2728-16.2017. Epub 2017 Mar 6.
9
Stimulus-specific enhancement in mouse visual cortex requires GABA but not VIP-peptide release from VIP interneurons.
J Neurophysiol. 2024 Jul 1;132(1):34-44. doi: 10.1152/jn.00463.2023. Epub 2024 May 22.
10
Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.
Nature. 2016 Mar 17;531(7594):371-5. doi: 10.1038/nature17187. Epub 2016 Mar 9.

引用本文的文献

1
Antioxidants Prevent the Effects of Physical Exercise on Visual Cortical Plasticity.
Cells. 2022 Dec 22;12(1):48. doi: 10.3390/cells12010048.
2
Moderate physical activity alters the estimation of time, but not space.
Front Psychol. 2022 Oct 5;13:1004504. doi: 10.3389/fpsyg.2022.1004504. eCollection 2022.
4
Structure and function of axo-axonic inhibition.
Elife. 2021 Dec 1;10:e73783. doi: 10.7554/eLife.73783.
5
Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions.
Front Mol Neurosci. 2021 Aug 19;14:710303. doi: 10.3389/fnmol.2021.710303. eCollection 2021.
6
Medial prefrontal lesions impair performance in an operant delayed nonmatch to sample working memory task.
Behav Neurosci. 2020 Jun;134(3):187-197. doi: 10.1037/bne0000357. Epub 2020 Mar 5.
8
Midlife reversibility of early-established biobehavioral risk factors: A research agenda.
Dev Psychol. 2019 Oct;55(10):2203-2218. doi: 10.1037/dev0000780. Epub 2019 Aug 1.
9
A new counterintuitive training for adult amblyopia.
Ann Clin Transl Neurol. 2018 Dec 28;6(2):274-284. doi: 10.1002/acn3.698. eCollection 2019 Feb.
10
Thalamocortical function in developing sensory circuits.
Curr Opin Neurobiol. 2018 Oct;52:72-79. doi: 10.1016/j.conb.2018.04.019. Epub 2018 Apr 30.

本文引用的文献

1
A cortical disinhibitory circuit for enhancing adult plasticity.
Elife. 2015 Jan 27;4:e05558. doi: 10.7554/eLife.05558.
2
Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion.
Neuron. 2014 Jul 16;83(2):455-466. doi: 10.1016/j.neuron.2014.06.031.
4
Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex.
Neuron. 2014 Apr 16;82(2):474-85. doi: 10.1016/j.neuron.2014.02.021. Epub 2014 Mar 20.
5
A cortical circuit for gain control by behavioral state.
Cell. 2014 Mar 13;156(6):1139-1152. doi: 10.1016/j.cell.2014.01.050.
6
Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1150-5. doi: 10.1073/pnas.1313385111. Epub 2014 Jan 6.
8
Fast modulation of visual perception by basal forebrain cholinergic neurons.
Nat Neurosci. 2013 Dec;16(12):1857-1863. doi: 10.1038/nn.3552. Epub 2013 Oct 27.
9
Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons.
Nat Neurosci. 2013 Aug;16(8):1068-76. doi: 10.1038/nn.3446. Epub 2013 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验