Wei Ziqiang, Wang Xiao-Jing
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, Maryland;
Center for Neural Science, New York University (NYU), New York, New York; and NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
J Neurophysiol. 2015 Jul;114(1):99-113. doi: 10.1152/jn.00793.2014. Epub 2015 May 6.
Evaluation of confidence about one's knowledge is key to the brain's ability to monitor cognition. To investigate the neural mechanism of confidence assessment, we examined a biologically realistic spiking network model and found that it reproduced salient behavioral observations and single-neuron activity data from a monkey experiment designed to study confidence about a decision under uncertainty. Interestingly, the model predicts that changes of mind can occur in a mnemonic delay when confidence is low; the probability of changes of mind increases (decreases) with task difficulty in correct (error) trials. Furthermore, a so-called "hard-easy effect" observed in humans naturally emerges, i.e., behavior shows underconfidence (underestimation of correct rate) for easy or moderately difficult tasks and overconfidence (overestimation of correct rate) for very difficult tasks. Importantly, in the model, confidence is computed using a simple neural signal in individual trials, without explicit representation of probability functions. Therefore, even a concept of metacognition can be explained by sampling a stochastic neural activity pattern.
对自身知识的信心评估是大脑监测认知能力的关键。为了研究信心评估的神经机制,我们考察了一个具有生物真实性的脉冲神经网络模型,发现它再现了来自一项猴子实验的显著行为观察结果和单神经元活动数据,该实验旨在研究在不确定性下对决策的信心。有趣的是,该模型预测,当信心较低时,在记忆延迟期间可能会出现想法改变;在正确(错误)试验中,想法改变的概率随任务难度增加(降低)。此外,在人类中观察到的所谓“难易效应”自然出现,即对于简单或中等难度的任务,行为表现为信心不足(低估正确率),而对于非常困难的任务,行为表现为过度自信(高估正确率)。重要的是,在该模型中,信心是在单个试验中使用简单的神经信号计算得出的,没有明确表示概率函数。因此,即使是元认知的概念也可以通过对随机神经活动模式进行采样来解释。