Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Philos Trans R Soc Lond B Biol Sci. 2012 May 19;367(1594):1322-37. doi: 10.1098/rstb.2012.0037.
Confidence judgements, self-assessments about the quality of a subject's knowledge, are considered a central example of metacognition. Prima facie, introspection and self-report appear the only way to access the subjective sense of confidence or uncertainty. Contrary to this notion, overt behavioural measures can be used to study confidence judgements by animals trained in decision-making tasks with perceptual or mnemonic uncertainty. Here, we suggest that a computational approach can clarify the issues involved in interpreting these tasks and provide a much needed springboard for advancing the scientific understanding of confidence. We first review relevant theories of probabilistic inference and decision-making. We then critically discuss behavioural tasks employed to measure confidence in animals and show how quantitative models can help to constrain the computational strategies underlying confidence-reporting behaviours. In our view, post-decision wagering tasks with continuous measures of confidence appear to offer the best available metrics of confidence. Since behavioural reports alone provide a limited window into mechanism, we argue that progress calls for measuring the neural representations and identifying the computations underlying confidence reports. We present a case study using such a computational approach to study the neural correlates of decision confidence in rats. This work shows that confidence assessments may be considered higher order, but can be generated using elementary neural computations that are available to a wide range of species. Finally, we discuss the relationship of confidence judgements to the wider behavioural uses of confidence and uncertainty.
信心判断,即对主体知识质量的自我评估,被认为是元认知的一个核心范例。直观上,内省和自我报告似乎是获取主观自信或不确定感的唯一途径。与这一观点相反,可以使用动物在具有感知或记忆不确定性的决策任务中进行训练的显性行为措施来研究信心判断。在这里,我们建议计算方法可以澄清解释这些任务所涉及的问题,并为推进对信心的科学理解提供急需的跳板。我们首先回顾了概率推理和决策的相关理论。然后,我们批判性地讨论了用于测量动物信心的行为任务,并展示了定量模型如何帮助限制报告信心的行为背后的计算策略。在我们看来,具有连续信心测量的决策后赌注任务似乎提供了最可用的信心指标。由于仅通过行为报告提供了对机制的有限了解,因此我们认为,要取得进展,就需要测量神经表示并确定信心报告背后的计算。我们提出了一个使用这种计算方法来研究大鼠决策信心的神经相关性的案例研究。这项工作表明,信心评估可以被认为是更高阶的,但可以使用基本的神经计算来生成,这些计算对广泛的物种都可用。最后,我们讨论了信心判断与信心和不确定性的更广泛行为用途之间的关系。