Nedev Spas, Carretero-Palacios Sol, Kühler Paul, Lohmüller Theobald, Urban Alexander S, Anderson Lindsey J E, Feldmann Jochen
Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU) , Amalienstaße 54, 80799 Munich, Germany ; Nanosystems Initiative Munich (NIM) , Schellingstraße 4, 80799 Munich, Germany.
Photonics and Optoelectronics Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU) , Amalienstaße 54, 80799 Munich, Germany ; Nanosystems Initiative Munich (NIM) , Schellingstraße 4, 80799 Munich, Germany ; Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) , C/Américo Vespucio 49, 41092 Sevilla, Spain.
ACS Photonics. 2015 Apr 15;2(4):491-496. doi: 10.1021/ph500371z. Epub 2015 Feb 16.
In this article, we report how Janus particles, composed of a silica sphere with a gold half-shell, can be not only stably trapped by optical tweezers but also displaced controllably along the axis of the laser beam through a complex interplay between optical and thermal forces. Scattering forces orient the asymmetric particle, while strong absorption on the metal side induces a thermal gradient, resulting in particle motion. An increase in the laser power leads to an upward motion of the particle, while a decrease leads to a downward motion. We study this reversible axial displacement, including a hysteretic jump in the particle position that is a result of the complex pattern of a tightly focused laser beam structure above the focal plane. As a first application we simultaneously trap a spherical gold nanoparticle and show that we can control the distance between the two particles inside the trap. This photonic micron-scale "elevator" is a promising tool for thermal force studies, remote sensing, and optical and thermal micromanipulation experiments.
在本文中,我们报告了由带有金半壳的二氧化硅球体组成的Janus粒子,不仅可以被光镊稳定捕获,还能通过光力和热力之间的复杂相互作用,沿激光束轴可控地移动。散射力使不对称粒子定向,而金属侧的强吸收会引起热梯度,从而导致粒子运动。激光功率增加会导致粒子向上运动,而功率降低则会导致粒子向下运动。我们研究了这种可逆的轴向位移,包括粒子位置的滞后跳跃,这是由于焦平面上方紧密聚焦激光束结构的复杂模式所致。作为首个应用,我们同时捕获了一个球形金纳米粒子,并表明我们可以控制陷阱内两个粒子之间的距离。这种光子微米级“电梯”是用于热力研究、遥感以及光学和热微操纵实验的一种很有前景的工具。