Glaser T, Housman D, Lewis W H, Gerhard D, Jones C
Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139.
Somat Cell Mol Genet. 1989 Nov;15(6):477-501. doi: 10.1007/BF01534910.
Deletion analysis offers a powerful alternative to linkage and karyotypic approaches for human chromosome mapping. A panel of deletion hybrids has been derived by mutagenizing J1, a hamster cell line that stably retains chromosome 11 as its only human DNA, and selecting for loss of MIC1, a surface antigen encoded by a gene in band 11p13. A unique, self-consistent map was constructed by analyzing the pattern of marker segregation in 22 derivative cells lines; these carry overlapping deletions of 11p13, but selectively retain a segment near the 11p telomere. The map orders 35 breakpoints and 36 genetic markers, including 3 antigens, 2 isozymes, 12 cloned genes, and 19 anonymous DNA probes. The deletions span the entire short arm, dividing it into more than 20 segments and define a set of reagents that can be used to rapidly locate any newly identified marker on 11p, with greatest resolution in the region surrounding MIC1. The approach we demonstrate can be applied to map any mammalian chromosome. To test the gene order, we examined somatic cell hybrids from five patients, whose reciprocal translocations bisect band 11p13; these include two translocations associated with familial aniridia and two with acute T-cell leukemia. In each patient, the markers segregate in telomeric and centromeric groups as predicted by the deletion map. These data locate the aniridia gene (AN2) and a recurrent T-cell leukemia breakpoint (TCL2) in the marker sequence, on opposite sides of MIC1. To provide additional support, we have characterized the dosage of DNA markers in a patient with Beckwith-Wiedemann syndrome and an 11p15-11pter duplication. Our findings suggest the following gene order: TEL - (HRAS1, MER2, CTSD, TH/INS/IGF2, H19, D11S32) - (RRM1, D11S1, D11S25, D11S26) - D11S12 - (HBBC, D11S30) - D11S20 - (PTH, CALC) - (LDHA, SAA, TRPH, D11S18, D11S21) - D11S31 - D11S17 - HBVS1 - (FSHB, D11S16) - AN2 - MIC1 - TCL2 - delta J - CAT - MIC4 - D11S9 - D11S14 - ACP2 - (D11S33, 14L) - CEN. We have used the deletion map to show the distribution on 11p of two centromeric repetitive elements and the low-order interspersed repeat A36Fc. Finally, we provide evidence for an allelic segregation event in the hamster genome that underlies the stability of chromosome 11 in J1. The deletion map provides a basis to position hereditary disease loci on 11p, to distinguish the pattern of recessive mutations in different forms of cancer and, since many of these genes have been mapped in other mammalian species, to study the evolution of a conserved syntenic group.
缺失分析为人类染色体图谱绘制提供了一种强有力的替代连锁分析和核型分析方法。通过诱变J1(一种稳定保留11号染色体作为其唯一人类DNA的仓鼠细胞系),并筛选MIC1(一种由11p13区域基因编码的表面抗原)的缺失,获得了一组缺失杂种细胞。通过分析22个衍生细胞系中标记物分离模式构建了一个独特、自洽的图谱;这些细胞系携带11p13的重叠缺失,但选择性地保留了11p端粒附近的一个片段。该图谱确定了35个断点和36个遗传标记的顺序,包括3种抗原、2种同工酶、12个克隆基因和19个匿名DNA探针。这些缺失跨越整个短臂,将其分成20多个片段,并定义了一组试剂,可用于在11p上快速定位任何新鉴定的标记物,在MIC1周围区域具有最高分辨率。我们展示的方法可应用于绘制任何哺乳动物染色体图谱。为了测试基因顺序,我们检查了来自五名患者的体细胞杂种,他们的相互易位将11p13区域一分为二;其中包括两个与家族性无虹膜相关的易位和两个与急性T细胞白血病相关的易位。在每个患者中,标记物如缺失图谱所预测的那样在端粒和着丝粒组中分离。这些数据将无虹膜基因(AN2)和一个复发性T细胞白血病断点(TCL2)定位在标记物序列中,位于MIC1的两侧。为了提供更多支持,我们对一名患有贝克威思-维德曼综合征且有11p15-11pter重复的患者的DNA标记物剂量进行了表征。我们的发现表明以下基因顺序:端粒 - (HRAS1、MER2、CTSD、TH/INS/IGF2、H19、D11S32) - (RRM1、D11S1、D11S25、D11S26) - D11S12 - (HBBC、D11S30) - D11S20 - (PTH、CALC) - (LDHA、SAA、TRPH、D11S18、D11S21) - D11S31 - D11S17 - HBVS1 - (FSHB、D11S16) - AN2 - MIC1 - TCL2 - delta J - CAT - MIC4 - D11S9 - D11S14 - ACP2 - (D11S33、14L) - 着丝粒。我们利用缺失图谱展示了两个着丝粒重复元件和低阶散布重复序列A36Fc在11p上的分布。最后,我们为仓鼠基因组中的一个等位基因分离事件提供了证据,该事件是J1中11号染色体稳定性的基础。缺失图谱为将遗传性疾病基因座定位在11p上、区分不同形式癌症中隐性突变的模式提供了基础,并且由于许多这些基因已在其他哺乳动物物种中定位,因此也为研究保守同线群的进化提供了基础。