Suppr超能文献

蓝光激光抑制金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌的细菌生长。

Blue Laser Inhibits Bacterial Growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.

作者信息

de Sousa Natanael Teixeira Alves, Santos Marcos Ferracioli, Gomes Rosana Caetano, Brandino Hugo Evangelista, Martinez Roberto, de Jesus Guirro Rinaldo Roberto

机构信息

1 Postgraduate Program in Rehabilitation and Functional Performance, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto, SP, Brazil .

出版信息

Photomed Laser Surg. 2015 May;33(5):278-82. doi: 10.1089/pho.2014.3854.

Abstract

OBJECTIVE

The purpose of this study was to analyze the influence of blue laser on bacterial growth of the main species that usually colonize cutaneous ulcers, as well as its effect over time following irradiation.

BACKGROUND DATA

The use of blue laser has been described as an adjuvant therapeutic method to inhibit bacterial growth, but there is no consensus about the best parameters to be used.

METHODS

Strains of Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922 were suspended in saline solution at a concentration of 1.5×10(3) colony forming units (CFU)/mL. Next, 300 μL of this suspension was transferred to a microtitulation plate and exposed to a single blue laser irradiation (450 nm) at fluences of 0 (control), 3, 6, 12, 18, and 24 J/cm(2). Each suspension was spread over the surface of a Petri plate before being incubated at 37°C, and counts of CFU were determined after 24 and 48 h.

RESULTS

Blue laser inhibited the growth of S. aureus and P. aeruginosa at fluences >6 J/cm(2). On the other hand, E. coli was inhibited at all fluences tested, except at 24 J/cm(2).

CONCLUSIONS

Blue laser light was capable of inhibiting bacterial growth at low fluences over time, thus presenting no time-dependent effect.

摘要

目的

本研究旨在分析蓝光对通常定植于皮肤溃疡的主要菌种细菌生长的影响,以及照射后随时间的效应。

背景资料

蓝光的使用已被描述为一种抑制细菌生长的辅助治疗方法,但对于最佳使用参数尚无共识。

方法

将金黄色葡萄球菌ATCC 25923、铜绿假单胞菌ATCC 27853和大肠埃希菌ATCC 25922菌株悬浮于盐溶液中,浓度为1.5×10³菌落形成单位(CFU)/mL。接下来,将300μL该悬浮液转移至微量滴定板,以0(对照)、3、6、12、18和24J/cm²的能量密度进行单次蓝光照射(450nm)。每种悬浮液在铺于培养皿表面后于37°C孵育,分别在24小时和48小时后测定CFU计数。

结果

蓝光在能量密度>6J/cm²时抑制金黄色葡萄球菌和铜绿假单胞菌的生长。另一方面,除了24J/cm²外,大肠埃希菌在所有测试能量密度下均受到抑制。

结论

蓝光能够在低能量密度下随时间抑制细菌生长,因此不存在时间依赖性效应。

相似文献

1
2
Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers.
Lasers Med Sci. 2016 Apr;31(3):549-56. doi: 10.1007/s10103-016-1907-x. Epub 2016 Feb 17.
3
Inhibition of bacterial growth through LED (light-emitting diode) 465 and 630 nm: in vitro.
Lasers Med Sci. 2022 Jul;37(5):2439-2447. doi: 10.1007/s10103-022-03505-3. Epub 2022 Jan 24.
5
Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli.
Lasers Med Sci. 2017 Jul;32(5):1081-1088. doi: 10.1007/s10103-017-2210-1. Epub 2017 Apr 20.
7
Bactericidal effects of the neodymium:YAG laser: in vitro study.
Lasers Surg Med. 1986;6(5):445-8. doi: 10.1002/lsm.1900060505.
8
Photosensitization of in vitro biofilms formed on denture base resin.
J Prosthet Dent. 2014 Sep;112(3):632-7. doi: 10.1016/j.prosdent.2014.01.001. Epub 2014 Mar 5.
10
In vitro analysis of bacterial morphology by atomic force microscopy of low level laser therapy 660, 830 and 904 nm.
Photomed Laser Surg. 2012 May;30(5):281-5. doi: 10.1089/pho.2011.3160. Epub 2012 Apr 17.

引用本文的文献

1
Selective bactericidal efficacy of 465-nm blue light phototherapy against standard and canine wound pathogens: An evaluation.
Vet World. 2025 Jul;18(7):2064-2071. doi: 10.14202/vetworld.2025.2064-2071. Epub 2025 Jul 27.
2
Adjunctive low-level laser therapy in periodontal treatment - A randomized clinical split-mouth trial.
Clin Oral Investig. 2025 Apr 25;29(5):273. doi: 10.1007/s00784-025-06289-2.
3
Lipopolysaccharide targeting-peptide-capped chitosan gold nanoparticles for laser-induced antibacterial activity.
Nanomedicine (Lond). 2024;19(23):1913-1929. doi: 10.1080/17435889.2024.2382073. Epub 2024 Sep 3.
6
Unlocking the Power of Light on the Skin: A Comprehensive Review on Photobiomodulation.
Int J Mol Sci. 2024 Apr 19;25(8):4483. doi: 10.3390/ijms25084483.
8
Photobiomodulation with Blue Light on Wound Healing: A Scoping Review.
Life (Basel). 2023 Feb 18;13(2):575. doi: 10.3390/life13020575.
9
The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing.
Life (Basel). 2022 Sep 14;12(9):1431. doi: 10.3390/life12091431.
10
Effects of Yellow Light on Airborne Microbial Composition and on the Transcriptome of Typical Marker Strain in Ward.
Dis Markers. 2022 May 18;2022:8762936. doi: 10.1155/2022/8762936. eCollection 2022.

本文引用的文献

1
Preliminary assessment of photoactivated antimicrobial collagen on bioburden in a murine pressure ulcer model.
Photomed Laser Surg. 2013 Nov;31(11):539-46. doi: 10.1089/pho.2012.3423. Epub 2013 Oct 19.
4
Risk factors and gene type for infections of MRSA in diabetic foot patients in Tianjin, China.
Int J Low Extrem Wounds. 2013 Jun;12(2):106-12. doi: 10.1177/1534734613489991.
5
Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA).
Photomed Laser Surg. 2013 Nov;31(11):547-53. doi: 10.1089/pho.2012.3461. Epub 2013 Apr 27.
7
Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions.
Photomed Laser Surg. 2013 Nov;31(11):531-8. doi: 10.1089/pho.2012.3365. Epub 2013 Feb 13.
8
Diabetic foot infections with osteomyelitis: efficacy of combined surgical and medical treatment.
Diabet Foot Ankle. 2012;3. doi: 10.3402/dfa.v3i0.18809. Epub 2012 Oct 1.
10
Microbiology at first visit of moderate-to-severe diabetic foot infection with antimicrobial activity and a survey of quinolone monotherapy.
Diabetes Res Clin Pract. 2011 Oct;94(1):133-9. doi: 10.1016/j.diabres.2011.07.017. Epub 2011 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验