Wexler Jason S, Jacobi Ian, Stone Howard A
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev Lett. 2015 Apr 24;114(16):168301. doi: 10.1103/PhysRevLett.114.168301. Epub 2015 Apr 22.
Rough or patterned surfaces infused with a lubricating liquid display many of the same useful properties as conventional gas-cushioned superhydrophobic surfaces. However, liquid-infused surfaces exhibit a new failure mode: the infused liquid film may drain due to an external shear flow, causing the surface to lose its advantageous properties. We examine shear-driven drainage of liquid-infused surfaces with the goal of understanding and thereby mitigating this failure mode. On patterned surfaces exposed to a known shear stress, we find that a finite length of the surface remains wetted indefinitely, despite the fact that no physical barriers prevent drainage. We develop an analytical model to explain our experimental results, and find that the steady-state retention results from the ability of patterned surfaces to wick wetting liquids, and is thus analogous to capillary rise. We establish the geometric surface parameters governing fluid retention and show how these parameters can describe even random substrate patterns.
注入润滑液的粗糙或有图案的表面展现出许多与传统气垫超疏水表面相同的有用特性。然而,注入液体的表面呈现出一种新的失效模式:注入的液膜可能会因外部剪切流而排出,导致表面失去其有利特性。我们研究注入液体表面的剪切驱动排水,目的是理解并减轻这种失效模式。在暴露于已知剪切应力的有图案表面上,我们发现尽管没有物理屏障阻止排水,但表面仍有一段有限长度会无限期保持湿润。我们开发了一个分析模型来解释我们的实验结果,发现稳态保留是由有图案表面吸收湿润液体的能力导致的,因此类似于毛细上升。我们确定了控制流体保留的几何表面参数,并展示了这些参数如何描述甚至是随机的基底图案。