Peter Grünberg Institute, PGI-8, Research Center Jülich, JARA - Fundamentals of Future Information Technology, Jülich 52425 (Germany).
Angew Chem Int Ed Engl. 2015 Jun 22;54(26):7693-7. doi: 10.1002/anie.201502315. Epub 2015 May 8.
Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer-target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a "yes" or "no" decision.
传统电子电路可以进行多级逻辑运算;然而,这种能力很少被生物逻辑门实现。此外,如何缩小生物分子计算和基于硅的电子电路之间的差距,仍然是生物电子学领域的一个关键问题。在这里,我们探索了一种新的基于分裂适体的多级逻辑门,由 INHIBIT 和 AND 门组成,可进行净异或分析,以电化学信号作为输出。基于适体-靶标相互作用和电化学整流的新概念,在适体连接的氧化还原探针和溶液相探针之间发生靶标结合时,会发生中继电荷转移,从而放大传感器信号,并便于进行直接可靠的诊断。这项工作为设计能够实现多级逻辑运算的生物电子逻辑电路开辟了一条新途径,有望将原本复杂的诊断简化为“是”或“否”的决策。