Suppr超能文献

用于太赫兹波的有源石墨烯-硅混合二极管。

Active graphene-silicon hybrid diode for terahertz waves.

作者信息

Li Quan, Tian Zhen, Zhang Xueqian, Singh Ranjan, Du Liangliang, Gu Jianqiang, Han Jiaguang, Zhang Weili

机构信息

1] Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China [2] School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA.

Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China.

出版信息

Nat Commun. 2015 May 11;6:7082. doi: 10.1038/ncomms8082.

Abstract

Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

摘要

控制太赫兹波在石墨烯中的传播特性,对于实现电子学与光子学融合的新技术具有巨大潜力。二极管是一种基本的电子器件,它能根据所加电压的极性使电流仅在一个方向上通过。通过同时进行光激发和电激发,我们通过实验证明了一种由石墨烯 - 硅混合薄膜构成的太赫兹波有源二极管。该二极管在正电压偏置时传输太赫兹波,而在低负电压下衰减太赫兹波,这可被视为电子半导体二极管的类似物。在此,我们在石墨烯 - 硅混合薄膜中获得了83%的大传输调制,这在设计宽带太赫兹调制器以及可切换太赫兹等离子体和超材料器件方面展现出巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f78/4432643/5d4e79f943d6/ncomms8082-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验