Zhang Jinwei, Ferré-D'Amaré Adrian R
Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
Wiley Interdiscip Rev RNA. 2015 Jul-Aug;6(4):419-33. doi: 10.1002/wrna.1285. Epub 2015 May 8.
In most Gram-positive bacteria, including many clinically devastating pathogens from genera such as Bacillus, Clostridium, Listeria, and Staphylococcus, T-box riboswitches sense and regulate intracellular availability of amino acids through a multipartite messenger RNA (mRNA)-transfer RNA (tRNA) interaction. The T-box mRNA leaders respond to nutrient starvation by specifically binding cognate tRNAs and sensing whether the bound tRNA is aminoacylated, as a proxy for amino acid availability. Based on this readout, T-boxes direct a transcriptional or translational switch to control the expression of downstream genes involved in various aspects of amino acid metabolism: biosynthesis, transport, aminoacylation, transamidation, and so forth. Two decades after its discovery, the structural and mechanistic underpinnings of the T-box riboswitch were recently elucidated, producing a wealth of insights into how two structured RNAs can recognize each other with robust affinity and exquisite selectivity. The T-box paradigm exemplifies how natural noncoding RNAs can interact not just through sequence complementarity but can add molecular specificity by precisely juxtaposing RNA structural motifs, exploiting inherently flexible elements and the biophysical properties of post-transcriptional modifications, ultimately achieving a high degree of shape complementarity through mutually induced fit. The T-box also provides a proof-of-principle that compact RNA domains can recognize minute chemical changes (such as tRNA aminoacylation) on another RNA. The unveiling of the structure and mechanism of the T-box system thus expands our appreciation of the range of capabilities and modes of action of structured noncoding RNAs, and hints at the existence of networks of noncoding RNAs that communicate through both, structural and sequence specificity.
在大多数革兰氏阳性细菌中,包括来自芽孢杆菌属、梭菌属、李斯特菌属和葡萄球菌属等许多临床上具有严重破坏力的病原体,T盒核糖开关通过多部分信使核糖核酸(mRNA)-转运核糖核酸(tRNA)相互作用来感知和调节细胞内氨基酸的可用性。T盒mRNA前导序列通过特异性结合同源tRNA并感知结合的tRNA是否被氨酰化来应对营养饥饿,以此作为氨基酸可用性的指标。基于这种读数,T盒引导转录或翻译开关,以控制参与氨基酸代谢各个方面的下游基因的表达,如生物合成、运输、氨酰化、转氨作用等。在其发现二十年后,T盒核糖开关的结构和机制基础最近得以阐明,这为深入了解两个结构化RNA如何以强大的亲和力和精确的选择性相互识别提供了丰富的见解。T盒范式例证了天然非编码RNA不仅可以通过序列互补相互作用,还可以通过精确并列RNA结构基序、利用固有柔性元件和转录后修饰的生物物理特性来增加分子特异性,最终通过相互诱导契合实现高度的形状互补。T盒还提供了一个原理证明,即紧凑的RNA结构域可以识别另一个RNA上的微小化学变化(如tRNA氨酰化)。T盒系统结构和机制的揭示因此扩展了我们对结构化非编码RNA的能力范围和作用方式的认识,并暗示存在通过结构和序列特异性进行通信的非编码RNA网络。