Zhang Jinwei, Jones Christopher P, Ferré-D'Amaré Adrian R
National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD, 20892-8012, USA.
National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD, 20892-8012, USA.
Biochim Biophys Acta. 2014 Oct;1839(10):1020-1029. doi: 10.1016/j.bbagrm.2014.04.014. Epub 2014 Apr 24.
Riboswitches are phylogenetically widespread non-coding mRNA domains that directly bind cellular metabolites and regulate transcription, translation, RNA stability or splicing via alternative RNA structures modulated by ligand binding. The details of ligand recognition by many riboswitches have been elucidated using X-ray crystallography and NMR. However, the global dynamics of riboswitch-ligand interactions and their thermodynamic driving forces are less understood. By compiling the work of many laboratories investigating riboswitches using small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC), we uncover general trends and common themes. There is a pressing need for community-wide consensus experimental conditions to allow results of riboswitch studies to be compared rigorously. Nonetheless, our meta-analysis reveals considerable diversity in the extent to which ligand binding reorganizes global riboswitch structures. It also demonstrates a wide spectrum of enthalpy-entropy compensation regimes across riboswitches that bind a diverse set of ligands, giving rise to a relatively narrow range of physiologically relevant free energies and ligand affinities. From the strongly entropy-driven binding of glycine to the predominantly enthalpy-driven binding of c-di-GMP to their respective riboswitches, these distinct thermodynamic signatures reflect the versatile strategies employed by RNA to adapt to the chemical natures of diverse ligands. Riboswitches have evolved to use a combination of long-range tertiary interactions, conformational selection, and induced fit to work with distinct ligand structure, charge, and solvation properties. This article is part of a Special Issue entitled: Riboswitches.
核糖开关是在系统发育上广泛存在的非编码mRNA结构域,它直接结合细胞代谢物,并通过配体结合调节的替代RNA结构来调控转录、翻译、RNA稳定性或剪接。许多核糖开关与配体识别的细节已通过X射线晶体学和核磁共振得以阐明。然而,核糖开关-配体相互作用的整体动力学及其热力学驱动力仍不太清楚。通过汇总许多实验室使用小角X射线散射(SAXS)和等温滴定量热法(ITC)对核糖开关进行研究的工作,我们发现了一般趋势和共同主题。迫切需要全领域一致的实验条件,以便能够严格比较核糖开关研究的结果。尽管如此,我们的荟萃分析揭示了配体结合重组全局核糖开关结构的程度存在相当大的差异。它还展示了结合各种不同配体的核糖开关中广泛的焓-熵补偿机制,产生了相对较窄范围的生理相关自由能和配体亲和力。从甘氨酸的强熵驱动结合到c-di-GMP的主要焓驱动结合到它们各自的核糖开关,这些不同的热力学特征反映了RNA用于适应不同配体化学性质的多种策略。核糖开关已经进化到使用长程三级相互作用、构象选择和诱导契合的组合来与不同的配体结构、电荷和溶剂化性质协同作用。本文是名为:核糖开关的特刊的一部分。