Bellardita Carmelo, Kiehn Ole
Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Curr Biol. 2015 Jun 1;25(11):1426-36. doi: 10.1016/j.cub.2015.04.005. Epub 2015 May 7.
Studies of locomotion in mice suggest that circuits controlling the alternating between left and right limbs may have a modular organization with distinct locomotor circuits being recruited at different speeds. It is not clear, however, whether such a modular organization reflects specific behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides a benchmark for studies of the neuronal control of locomotion in the full range of speeds. It provides evidence that gait expression depends upon selection of different modules of neuronal ensembles.
对小鼠运动的研究表明,控制左右肢体交替的神经回路可能具有模块化组织,不同的运动回路在不同速度下被激活。然而,尚不清楚这种模块化组织是否反映了在不同运动速度下表现出的特定行为结果。在这里,我们使用详细的运动学分析来寻找完整和转基因小鼠在不同运动速度下运动回路模块化组织的特征。我们发现野生型小鼠表现出三种不同的步态:两种交替步态,即行走和小跑,以及一种同步步态,即跳跃。每种步态都在不同的速度范围内表现出来,具有明显的肢体间和肢体内协调性。第四种步态,疾驰,在大多数运动参数上与跳跃相似,但表现出不同的肢体间协调性。联合V0V神经元的基因消融完全消除了一种交替步态,即小跑的表现,但行走、疾驰和跳跃不受影响。联合V0V和V0D神经元的消融导致行走、小跑和疾驰的丧失,只剩下跳跃作为默认步态。我们的研究为全速度范围内运动的神经控制研究提供了一个基准。它提供了证据表明步态表现取决于对不同神经元集合模块的选择。