You Mingxu, Litke Jacob L, Jaffrey Samie R
Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065.
Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065
Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2756-65. doi: 10.1073/pnas.1504354112. Epub 2015 May 11.
Riboswitches are natural ligand-sensing RNAs typically that are found in the 5' UTRs of mRNA. Numerous classes of riboswitches have been discovered, enabling mRNA to be regulated by diverse and physiologically important cellular metabolites and small molecules. Here we describe Spinach riboswitches, a new class of genetically encoded metabolite sensor derived from naturally occurring riboswitches. Drawing upon the structural switching mechanism of natural riboswitches, we show that Spinach can be swapped for the expression platform of various riboswitches, allowing metabolite binding to induce Spinach fluorescence directly. In the case of the thiamine 5'-pyrophosphate (TPP) riboswitch from the Escherichia coli thiM gene encoding hydroxyethylthiazole kinase, we show that insertion of Spinach results in an RNA sensor that exhibits fluorescence upon binding TPP. This TPP Spinach riboswitch binds TPP with affinity and selectivity similar to that of the endogenous riboswitch and enables the discovery of agonists and antagonists of the TPP riboswitch using simple fluorescence readouts. Furthermore, expression of the TPP Spinach riboswitch in Escherichia coli enables live imaging of dynamic changes in intracellular TPP concentrations in individual cells. Additionally, we show that other riboswitches that use a structural mechanism similar to that of the TPP riboswitch, including the guanine and adenine riboswitches from the Bacillus subtilis xpt gene encoding xanthine phosphoribosyltransferase, and the S-adenosyl-methionine-I riboswitch from the B. subtilis yitJ gene encoding methionine synthase, can be converted into Spinach riboswitches. Thus, Spinach riboswitches constitute a novel class of RNA-based fluorescent metabolite sensors that exploit the diversity of naturally occurring ligand-binding riboswitches.
核糖开关是一类天然的能感知配体的RNA,通常存在于mRNA的5'非翻译区(UTR)。现已发现众多类型的核糖开关,可使mRNA受多种具有生理重要性的细胞代谢物和小分子调控。在此,我们描述菠菜核糖开关,这是一类源自天然核糖开关的新型基因编码代谢物传感器。基于天然核糖开关的结构转换机制,我们发现菠菜核糖开关可替换各种核糖开关的表达平台,使代谢物结合能直接诱导菠菜核糖开关发出荧光。以大肠杆菌thiM基因编码羟乙基噻唑激酶的硫胺素5'-焦磷酸(TPP)核糖开关为例,我们发现插入菠菜核糖开关后可形成一种RNA传感器,该传感器在结合TPP时会发出荧光。这种TPP菠菜核糖开关结合TPP的亲和力和选择性与内源性核糖开关相似,利用简单的荧光读数即可发现TPP核糖开关的激动剂和拮抗剂。此外,在大肠杆菌中表达TPP菠菜核糖开关能够对单个细胞内TPP浓度的动态变化进行实时成像。另外,我们还表明,其他采用与TPP核糖开关类似结构机制的核糖开关,包括枯草芽孢杆菌xpt基因编码黄嘌呤磷酸核糖基转移酶的鸟嘌呤和腺嘌呤核糖开关,以及枯草芽孢杆菌yitJ基因编码甲硫氨酸合酶的S-腺苷甲硫氨酸-I核糖开关,均可转化为菠菜核糖开关。因此,菠菜核糖开关构成了一类新型的基于RNA的荧光代谢物传感器,它利用了天然存在的配体结合核糖开关的多样性。