Bourbousse Clara, Mestiri Imen, Zabulon Gerald, Bourge Mickaël, Formiggini Fabio, Koini Maria A, Brown Spencer C, Fransz Paul, Bowler Chris, Barneche Fredy
Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, 75005 Paris, France; IBENS, INSERM, U1024, 75005 Paris, France; UMR 8197, CNRS, 75005 Paris, France;
Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, F-91198 Gif-sur-Yvette, France;
Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2836-44. doi: 10.1073/pnas.1503512112. Epub 2015 May 11.
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
染色质的空间组织在植物体细胞中可因发育和环境信号而发生广泛重塑。然而,控制这些动态变化的机制及其对核活性的功能影响却知之甚少。在这里,我们确定光感知在拟南芥胚后发育过程中触发了两种不同核结构模式之间的转换。在萌发过程中,子叶细胞中渐进性的细胞核扩张和异染色质重排在光照和黑暗条件下的实现方式相似,但导致成熟核表型的后期步骤以器官特异性方式与光形态建成转变密切相关。光信号整合因子去黄化1和组成型光形态建成1在黄化子叶中将异染色质维持在解聚状态。相反,在光照条件下,隐花色素介导的光感知会释放核扩张并导致明显的染色中心内的异染色质压缩。对于所有测试的基因座,光形态建成过程中的染色质浓缩并未明显依赖基于DNA甲基化的过程。尽管如此,基于转座子驱动的报告基因的重新激活,转录基因沉默的效率在转变过程中可能会受到影响。最后,我们报告在光照条件下RNA聚合酶II在转录中的整体参与度大幅增加,这表明子叶光形态建成涉及从整体静止到更活跃转录状态的转变。鉴于这些发现,我们提出光触发的核结构变化是异染色质重组与光合作用建立相关的转录重编程之间相互作用的基础。