CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
Sci Total Environ. 2015 Sep 1;526:312-28. doi: 10.1016/j.scitotenv.2015.04.048.
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
难以生物降解的多环芳烃(PAHs)释放到海水中最终会进入深海沉积物(DSSs)。然而,理论模型往往过于简化了它们在这里的命运。尽管静水压力高和温度低会显著限制 PAH 的生物降解,但 DSSs 中 PAHs 的生物降解被假设与表面生境中的生物降解相似。居住在 DSSs 中的细菌(主要与α-和γ-变形菌有关)已被证明或预测具有独特的基因、酶和代谢途径,表明这些细菌群落适应了 DSSs 的低温嗜冷条件。这项工作总结了一些关于 DSS 烃类分解种群和 PAH 降解机制的最新研究,并讨论了未来高 CO2 和 UV 气候情景对 DSSs 中 PAH 生物降解带来的挑战。