Suppr超能文献

短暂麻醉而非自主运动,会显著改变皮层温度。

Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature.

作者信息

Shirey Michael J, Smith Jared B, Kudlik D'Anne E, Huo Bing-Xing, Greene Stephanie E, Drew Patrick J

机构信息

Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania;

Center for Neural Engineering, Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania; and.

出版信息

J Neurophysiol. 2015 Jul;114(1):309-22. doi: 10.1152/jn.00046.2015. Epub 2015 May 13.

Abstract

Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.

摘要

脑温变化可改变神经元的电特性并导致行为改变。然而,人们对诸如运动等行为或诸如麻醉等实验操作如何改变脑温尚不清楚。我们将热电偶植入小鼠的感觉运动皮层,以了解皮层温度是如何受到运动以及短暂和长时间麻醉的影响。自主运动引起皮层温度小幅(约0.1℃)但可靠的升高,可用线性卷积模型来描述。相比之下,短暂(90秒)暴露于异氟烷麻醉使皮层温度降低约2℃,在麻醉停止后这种降低持续长达30分钟。皮层温度降低并未伴随γ波段局部场电位功率、多单位放电率或运动行为的相应降低,这些在麻醉停止后几分钟内均恢复到基线水平。在核心体温保持恒定的麻醉动物中,皮层温度仍比清醒动物低>1℃。植入皮层下的热电偶在麻醉下显示出类似的温度变化,表明这些反应在整个大脑中都会发生。对短暂异氟烷暴露后单个血管动力学的双光子显微镜观察显示,血管直径大幅增加,且在脑温显著降低之前就停止了,这表明脑热散失并非由于脑血管扩张增加所致。在记录麻醉制剂的实验设计、将温度与神经活动相关联的计算模型以及在实验程序前需要短暂麻醉的清醒行为方法中,应考虑这些数据。

相似文献

1
Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature.
J Neurophysiol. 2015 Jul;114(1):309-22. doi: 10.1152/jn.00046.2015. Epub 2015 May 13.
2
Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat.
eNeuro. 2017 Aug 7;4(4). doi: 10.1523/ENEURO.0059-17.2017. eCollection 2017 Jul-Aug.
3
Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states.
Neurobiol Dis. 2015 Mar;75:177-85. doi: 10.1016/j.nbd.2014.12.026. Epub 2015 Jan 6.
5
Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets.
J Neurosci Methods. 2016 Sep 15;271:55-64. doi: 10.1016/j.jneumeth.2016.07.003. Epub 2016 Jul 5.
6
Local wakefulness-like activity of layer 5 cortex under general anaesthesia.
J Physiol. 2024 Oct;602(20):5289-5307. doi: 10.1113/JP286417. Epub 2024 Sep 24.
7
The impact of hypothermia on emergence from isoflurane anesthesia in orexin neuron-ablated mice.
Anesth Analg. 2013 May;116(5):1001-1005. doi: 10.1213/ANE.0b013e31828842f0. Epub 2013 Mar 11.
8
Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1.
J Neurophysiol. 2018 Nov 1;120(5):2232-2245. doi: 10.1152/jn.00299.2018. Epub 2018 Aug 1.
10

引用本文的文献

3
Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice.
Commun Biol. 2023 Jul 17;6(1):738. doi: 10.1038/s42003-023-05121-5.
5
Neurovascular coupling: motive unknown.
Trends Neurosci. 2022 Nov;45(11):809-819. doi: 10.1016/j.tins.2022.08.004. Epub 2022 Aug 19.
6
Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide.
Neurophotonics. 2022 Apr;9(2):021905. doi: 10.1117/1.NPh.9.2.021905. Epub 2022 Jan 27.
7
Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex.
PLoS Biol. 2021 Jul 15;19(7):e3001298. doi: 10.1371/journal.pbio.3001298. eCollection 2021 Jul.
8
9
Neurovascular coupling and bilateral connectivity during NREM and REM sleep.
Elife. 2020 Oct 29;9:e62071. doi: 10.7554/eLife.62071.
10
Optical measurement of microvascular oxygenation and blood flow responses in awake mouse cortex during functional activation.
J Cereb Blood Flow Metab. 2022 Mar;42(3):510-525. doi: 10.1177/0271678X20928011. Epub 2020 Jun 9.

本文引用的文献

1
Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion.
Neuroimage. 2015 Jan 15;105:369-79. doi: 10.1016/j.neuroimage.2014.10.030. Epub 2014 Oct 23.
2
Brain temperature and its fundamental properties: a review for clinical neuroscientists.
Front Neurosci. 2014 Oct 8;8:307. doi: 10.3389/fnins.2014.00307. eCollection 2014.
3
Neurovascular coupling and decoupling in the cortex during voluntary locomotion.
J Neurosci. 2014 Aug 13;34(33):10975-81. doi: 10.1523/JNEUROSCI.1369-14.2014.
4
Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion.
Neuron. 2014 Jul 16;83(2):455-466. doi: 10.1016/j.neuron.2014.06.031.
5
Determination of vessel cross-sectional area by thresholding in Radon space.
J Cereb Blood Flow Metab. 2014 Jul;34(7):1180-7. doi: 10.1038/jcbfm.2014.67. Epub 2014 Apr 16.
6
Phase maintenance in a rhythmic motor pattern during temperature changes in vivo.
J Neurophysiol. 2014 Jun 15;111(12):2603-13. doi: 10.1152/jn.00906.2013. Epub 2014 Mar 26.
7
Cellular mechanisms of brain state-dependent gain modulation in visual cortex.
Nat Neurosci. 2013 Sep;16(9):1331-9. doi: 10.1038/nn.3464. Epub 2013 Jul 21.
9
Rat whisker motor cortex is subdivided into sensory-input and motor-output areas.
Front Neural Circuits. 2013 Jan 28;7:4. doi: 10.3389/fncir.2013.00004. eCollection 2013.
10
Brain temperature: physiology and pathophysiology after brain injury.
Anesthesiol Res Pract. 2012;2012:989487. doi: 10.1155/2012/989487. Epub 2012 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验