Aurich Maike K, Paglia Giuseppe, Rolfsson Óttar, Hrafnsdóttir Sigrún, Magnúsdóttir Manuela, Stefaniak Magdalena M, Palsson Bernhard Ø, Fleming Ronan M T, Thiele Ines
Center for Systems Biology, University of Iceland, Reykjavik, Iceland ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-Sur-Alzette, Luxembourg.
Center for Systems Biology, University of Iceland, Reykjavik, Iceland.
Metabolomics. 2015;11(3):603-619. doi: 10.1007/s11306-014-0721-3. Epub 2014 Aug 14.
Metabolic models can provide a mechanistic framework to analyze information-rich omics data sets, and are increasingly being used to investigate metabolic alternations in human diseases. An expression of the altered metabolic pathway utilization is the selection of metabolites consumed and released by cells. However, methods for the inference of intracellular metabolic states from extracellular measurements in the context of metabolic models remain underdeveloped compared to methods for other omics data. Herein, we describe a workflow for such an integrative analysis emphasizing on extracellular metabolomics data. We demonstrate, using the lymphoblastic leukemia cell lines Molt-4 and CCRF-CEM, how our methods can reveal differences in cell metabolism. Our models explain metabolite uptake and secretion by predicting a more glycolytic phenotype for the CCRF-CEM model and a more oxidative phenotype for the Molt-4 model, which was supported by our experimental data. Gene expression analysis revealed altered expression of gene products at key regulatory steps in those central metabolic pathways, and literature query emphasized the role of these genes in cancer metabolism. Moreover, in silico gene knock-outs identified unique control points for each cell line model, e.g., phosphoglycerate dehydrogenase for the Molt-4 model. Thus, our workflow is well-suited to the characterization of cellular metabolic traits based on extracellular metabolomic data, and it allows the integration of multiple omics data sets into a cohesive picture based on a defined model context.
代谢模型可为分析信息丰富的组学数据集提供一个机制框架,并且越来越多地被用于研究人类疾病中的代谢变化。代谢途径利用改变的一种表现是细胞消耗和释放的代谢物的选择。然而,与其他组学数据的方法相比,在代谢模型背景下从细胞外测量推断细胞内代谢状态的方法仍未充分发展。在此,我们描述了一种强调细胞外代谢组学数据的综合分析工作流程。我们使用淋巴母细胞白血病细胞系Molt-4和CCRF-CEM证明了我们的方法如何揭示细胞代谢的差异。我们的模型通过预测CCRF-CEM模型具有更多糖酵解表型和Molt-4模型具有更多氧化表型来解释代谢物的摄取和分泌,这得到了我们实验数据的支持。基因表达分析揭示了那些中心代谢途径关键调控步骤处基因产物的表达改变,文献查询强调了这些基因在癌症代谢中的作用。此外,计算机模拟基因敲除确定了每个细胞系模型的独特控制点,例如Molt-4模型中的磷酸甘油酸脱氢酶。因此,我们的工作流程非常适合基于细胞外代谢组学数据表征细胞代谢特征,并且它允许将多个组学数据集整合到基于定义模型背景的连贯图景中。