Suppr超能文献

MarVis-通路:非靶向代谢组学数据的整合与探索性通路分析

MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data.

作者信息

Kaever Alexander, Landesfeind Manuel, Feussner Kirstin, Mosblech Alina, Heilmann Ingo, Morgenstern Burkhard, Feussner Ivo, Meinicke Peter

机构信息

Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany.

Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.

出版信息

Metabolomics. 2015;11(3):764-777. doi: 10.1007/s11306-014-0734-y. Epub 2014 Oct 10.

Abstract

A central aim in the evaluation of non-targeted metabolomics data is the detection of intensity patterns that differ between experimental conditions as well as the identification of the underlying metabolites and their association with metabolic pathways. In this context, the identification of metabolites based on non-targeted mass spectrometry data is a major bottleneck. In many applications, this identification needs to be guided by expert knowledge and interactive tools for exploratory data analysis can significantly support this process. Additionally, the integration of data from other omics platforms, such as DNA microarray-based transcriptomics, can provide valuable hints and thereby facilitate the identification of metabolites via the reconstruction of related metabolic pathways. We here introduce the MarVis-Pathway tool, which allows the user to identify metabolites by annotation of pathways from cross-omics data. The analysis is supported by an extensive framework for pathway enrichment and meta-analysis. The tool allows the mapping of data set features by ID, name, and accurate mass, and can incorporate information from adduct and isotope correction of mass spectrometry data. MarVis-Pathway was integrated in the MarVis-Suite (http://marvis.gobics.de), which features the seamless highly interactive filtering, combination, clustering, and visualization of omics data sets. The functionality of the new software tool is illustrated using combined mass spectrometry and DNA microarray data. This application confirms jasmonate biosynthesis as important metabolic pathway that is upregulated during the wound response of Arabidopsis plants.

摘要

非靶向代谢组学数据评估的一个核心目标是检测实验条件之间不同的强度模式,以及识别潜在的代谢物及其与代谢途径的关联。在这种情况下,基于非靶向质谱数据的代谢物识别是一个主要瓶颈。在许多应用中,这种识别需要专家知识的指导,而用于探索性数据分析的交互式工具可以显著支持这一过程。此外,整合来自其他组学平台的数据,如基于DNA微阵列的转录组学数据,可以提供有价值的线索,从而通过重建相关代谢途径来促进代谢物的识别。我们在此介绍MarVis-Pathway工具,它允许用户通过对跨组学数据的途径进行注释来识别代谢物。该分析得到了一个广泛的途径富集和荟萃分析框架的支持。该工具允许通过ID、名称和精确质量对数据集特征进行映射,并且可以纳入来自质谱数据加合物和同位素校正的信息。MarVis-Pathway被集成到MarVis-Suite(http://marvis.gobics.de)中,该软件具有对组学数据集进行无缝高度交互式过滤、组合、聚类和可视化的功能。使用质谱和DNA微阵列组合数据说明了新软件工具的功能。该应用证实茉莉酸生物合成是拟南芥植物伤口反应过程中上调的重要代谢途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d45/4419191/6053378244fc/11306_2014_734_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验