Suppr超能文献

转录组学和代谢组学数据的整合与建模以识别活性途径。

Transcriptional and metabolic data integration and modeling for identification of active pathways.

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.

出版信息

Biostatistics. 2012 Sep;13(4):748-61. doi: 10.1093/biostatistics/kxs016. Epub 2012 Jun 14.

Abstract

With the growing availability of omics data generated to describe different cells and tissues, the modeling and interpretation of such data has become increasingly important. Pathways are sets of reactions involving genes, metabolites, and proteins highlighting functional modules in the cell. Therefore, to discover activated or perturbed pathways when comparing two conditions, for example two different tissues, it is beneficial to use several types of omics data. We present a model that integrates transcriptomic and metabolomic data in order to make an informed pathway-level decision. Since metabolites can be seen as end-points of perturbations happening at the gene level, the gene expression data constitute the explanatory variables in a sparse regression model for the metabolite data. Sophisticated model selection procedures are developed to determine an appropriate model. We demonstrate that the transcript profiles can be used to informatively explain the metabolite data from cancer cell lines. Simulation studies further show that the proposed model offers a better performance in identifying active pathways than, for example, enrichment methods performed separately on the transcript and metabolite data.

摘要

随着越来越多的用于描述不同细胞和组织的组学数据的出现,对这些数据的建模和解释变得越来越重要。途径是涉及基因、代谢物和蛋白质的一系列反应,突出了细胞中的功能模块。因此,为了在比较两种条件(例如两种不同的组织)时发现激活或受到干扰的途径,使用几种类型的组学数据是有益的。我们提出了一种整合转录组学和代谢组学数据的模型,以便在途径水平上做出明智的决策。由于代谢物可以被视为基因水平上发生的扰动的终点,因此基因表达数据构成了代谢物数据稀疏回归模型的解释变量。我们开发了复杂的模型选择程序来确定合适的模型。我们证明转录谱可以用于从癌细胞系中提供有关代谢物数据的信息性解释。模拟研究进一步表明,与例如分别在转录物和代谢物数据上执行的富集方法相比,所提出的模型在识别活跃途径方面具有更好的性能。

相似文献

3
Sparse PLS-Based Method for Overlapping Metabolite Set Enrichment Analysis.基于稀疏偏最小二乘的重叠代谢物集富集分析方法。
J Proteome Res. 2021 Jun 4;20(6):3204-3213. doi: 10.1021/acs.jproteome.1c00064. Epub 2021 May 18.

引用本文的文献

6
The discordant method: a novel approach for differential correlation.不一致方法:一种用于差异相关性分析的新方法。
Bioinformatics. 2016 Mar 1;32(5):690-6. doi: 10.1093/bioinformatics/btv633. Epub 2015 Oct 31.

本文引用的文献

5
The cancer genome.癌症基因组
Nature. 2009 Apr 9;458(7239):719-24. doi: 10.1038/nature07943.
7
Diagnostics: The prostate-cancer metabolome.诊断:前列腺癌代谢组
Nature. 2009 Feb 12;457(7231):799-800. doi: 10.1038/457799a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验