Raut Samarth S, Liu Peng, Finol Ender A
Carnegie Mellon University, Pittsburgh, PA 15213, United States.
University of Texas at San Antonio, Department of Biomedical Engineering, AET 1.360, One UTSA Circle, San Antonio, TX 78249, United States.
J Biomech. 2015 Jul 16;48(10):1972-81. doi: 10.1016/j.jbiomech.2015.04.006. Epub 2015 Apr 16.
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be sufficiently robust to handle aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; and mean wall thickness 1.401±0.120 mm), the average wall thickness in the mesh was 1.459±0.123 mm. The absolute error in average wall thickness was 0.060±0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks.
在这项工作中,我们提出了一种计算效率高的基于图像的血管体积网格生成方法,该方法通过对壁面网格进行新颖的向内挤压来实现空间变化的患者特异性壁厚。无需指定特征或地标点作为输入,就可以获得具有任意数量、位置和模式的髂动脉分叉和血栓的多域血管网格。此外,网格输出与坐标框架无关,并且与图像网格分辨率无关,具有高尺寸精度和网格质量,没有现成的基于图像的模型生成工作流程中常见的错误。不存在可变形模板模型或基于笛卡尔网格的方法,使得本方法足够稳健,能够处理形状高度不规则的动脉瘤几何形状、几乎平行于图像平面的动脉分支以及可变壁厚。该方法的评估基于:i)表面重建精度的估计;ii)使用动脉瘤模型对输出网格进行验证;iii)将体积网格质量与其他框架进行基准测试。对于模型图像数据集(像素大小0.105毫米;切片间距0.7毫米;平均壁厚1.401±0.120毫米),网格中的平均壁厚为1.459±0.123毫米。平均壁厚的绝对误差为0.060±0.036毫米,约为最大图像网格间距(0.7毫米)的8.6%,实际平均壁厚的4.36%。发现网格质量指标和再现壁厚区域变化的能力优于类似的替代框架。