Suppr超能文献

ONCOTYROL前列腺癌结局与政策模型:患病率假设对筛查利弊平衡的影响。

The ONCOTYROL Prostate Cancer Outcome and Policy Model: Effect of Prevalence Assumptions on the Benefit-Harm Balance of Screening.

作者信息

Mühlberger Nikolai, Kurzthaler Christina, Iskandar Rowan, Krahn Murray D, Bremner Karen E, Oberaigner Willi, Klocker Helmut, Horninger Wolfgang, Conrads-Frank Annette, Sroczynski Gaby, Siebert Uwe

机构信息

Department of Public Health and Health Technology Assessment, UMIT-University for Health Sciences, Medical Informatics and Technology, Tyrol, Austria (NM, CK, RI, ACF, GS, US)

Division of Health Technology Assessment and Bioinformatics, ONCOTYROL-Center for Personalized Cancer Medicine, Innsbruck, Austria (NM, CK, RI, ACF, GS, US)

出版信息

Med Decis Making. 2015 Aug;35(6):758-72. doi: 10.1177/0272989X15585114. Epub 2015 May 14.

Abstract

BACKGROUND

The ONCOTYROL Prostate Cancer Outcome and Policy (PCOP) model is a state-transition microsimulation model evaluating the benefits and harms of prostate cancer (PCa) screening. The natural history and detection component of the original model was based on the 2003 version of the Erasmus MIcrosimulation SCreening ANalysis (MISCAN) model, which was not calibrated to prevalence data. Compared with data from autopsy studies, prevalence of latent PCa assumed by the original model is low, which may bias the model toward screening. Our objective was to recalibrate the original model to match prevalence data from autopsy studies as well and compare benefit-harm predictions of the 2 model versions differing in prevalence.

METHODS

For recalibration, we reprogrammed the natural history and detection component of the PCOP model as a deterministic Markov state-transition cohort model in the statistical software package R. All parameters were implemented as variables or time-dependent functions and calibrated simultaneously in a single run. Observed data used as calibration targets included data from autopsy studies, cancer registries, and the European Randomized Study of Screening for Prostate Cancer. Compared models were identical except for calibrated parameters.

RESULTS

We calibrated 46 parameters. Prevalence from autopsy studies could not be fitted using the original parameter set. Additional parameters, allowing for interruption of disease progression and age-dependent screening sensitivities, were needed. Recalibration to higher prevalence demonstrated a considerable increase of overdiagnosis and decline of screening sensitivity, which significantly worsened the benefit-harm balance of screening.

CONCLUSIONS

Our calibration suggests that not all cancers are at risk of progression, and screening sensitivity may be lower at older ages. PCa screening models that use calibration to simulate disease progression in the unobservable latent phase are highly sensitive to prevalence assumptions.

摘要

背景

ONCOTYROL前列腺癌结局与政策(PCOP)模型是一种状态转换微观模拟模型,用于评估前列腺癌(PCa)筛查的益处和危害。原始模型的自然史和检测部分基于2003版的伊拉斯谟微观模拟筛查分析(MISCAN)模型,该模型未根据患病率数据进行校准。与尸检研究数据相比,原始模型假设的潜伏性PCa患病率较低,这可能使模型偏向于筛查。我们的目标是重新校准原始模型,使其也能匹配尸检研究中的患病率数据,并比较患病率不同的两个模型版本的利弊预测。

方法

为了重新校准,我们在统计软件包R中将PCOP模型的自然史和检测部分重新编程为确定性马尔可夫状态转换队列模型。所有参数都作为变量或时间依赖函数实现,并在一次运行中同时进行校准。用作校准目标的观察数据包括尸检研究、癌症登记处的数据以及欧洲前列腺癌筛查随机研究的数据。除校准参数外,比较的模型是相同的。

结果

我们校准了46个参数。使用原始参数集无法拟合尸检研究中的患病率。需要额外的参数,以考虑疾病进展的中断和年龄依赖性筛查敏感性。重新校准到更高的患病率表明过度诊断显著增加,筛查敏感性下降,这显著恶化了筛查的利弊平衡。

结论

我们的校准表明并非所有癌症都有进展风险,并且老年时筛查敏感性可能较低。使用校准来模拟不可观察的潜伏阶段疾病进展的PCa筛查模型对患病率假设高度敏感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验