Munich Center for Integrated Protein Science at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
Munich Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
J Mol Biol. 2015 Jul 31;427(15):2548-2561. doi: 10.1016/j.jmb.2015.05.001. Epub 2015 May 12.
The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pH<6.8. Strikingly, a variant with inversed cadBA expression profile, which lacks most of the linker, dimerizes preferentially at higher pH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain.
大肠杆菌中 pH 响应的单组分信号系统 CadC 属于 ToxR 样蛋白家族,其成员具有保守的模块化结构,N 端胞质 winged helix-turn-helix DNA 结合域后面是单个跨膜螺旋和 C 端周质 pH 感应域。在大肠杆菌 CadC 中,由大约 50 个氨基酸组成的胞质接头对于将信号从传感器传递到 DNA 结合域是必需的。然而,信号转导的机制还不清楚。本文使用 NMR 光谱学证明,该接头区域在溶液中是固有无序的。此外,突变分析表明,它可以容忍一系列氨基酸取代(改变极性、刚性和α-螺旋形成倾向),对延伸具有鲁棒性,但对截断敏感。事实上,截断要么逆转了靶操纵子 cadBA 的表达谱,要么完全将表达与外部 pH 解耦。CadC 通过其周质域二聚化,但光散射分析没有提供证据表明分离的 DNA 结合域是否存在二聚化,无论是否存在接头区域。然而,细菌双杂交分析表明,CadC 以刺激和接头依赖性的方式形成稳定的二聚体,仅在 pH<6.8 时相互作用。引人注目的是,一种具有反转 cadBA 表达谱的变体,其缺失了大部分接头,优先在较高 pH 值下二聚化。因此,我们提出无序的 CadC 接头对于将周质传感器的 pH 依赖性响应转导为促进胞质 CadC DNA 结合域二聚化的结构重排是必需的。