Lindner Eric, White Stephen H
Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA.
Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA.
J Mol Biol. 2014 Aug 12;426(16):2942-57. doi: 10.1016/j.jmb.2014.06.006. Epub 2014 Jun 16.
Under acid stress, Escherichia coli induce expression of CadA (lysine decarboxylase) and CadB (lysine/cadaverine antiporter) in a lysine-rich environment. The ToxR-like transcriptional activator CadC controls expression of the cadBA operon. Using a novel signal peptidase I (SPase I) cleavage assay, we show that CadC is a type II single-span membrane protein (S-SMP) with a cytoplasmic DNA-binding domain and a periplasmic sensor domain. We further show that, as long assumed, dimerization of the sensor domain is required for activating the cadBA operon. We prove this using a chimera in which the periplasmic domain of RodZ-a type II membrane protein involved in the maintenance of the rod shape of E. coli-replaces the CadC sensor domain. Because the RodZ periplasmic domain cannot dimerize, the chimera cannot activate the operon. However, replacement of the transmembrane (TM) domain of the chimera with the glycophorin A TM domain causes intramembrane dimerization and consequently operon activation. Using a low-expression protocol that eliminates extraneous TM helix dimerization signals arising from protein over-expression, we enhanced dramatically the dynamic range of the β-galactosidase assay for cadBA activation. Consequently, the strength of the intramembrane dimerization of the glycophorin A domain could be compared quantitatively with the strength of the much stronger periplasmic dimerization of CadC. For the signal peptidase assay, we inserted an SPase I cleavage site (AAA or AQA) at the periplasmic end of the TM helix. Cleavage occurred with high efficiency for all TM and periplasmic domains tested, thus eliminating the need for the cumbersome spheroplast-proteinase K method for topology determinations.
在酸性应激条件下,大肠杆菌在富含赖氨酸的环境中诱导CadA(赖氨酸脱羧酶)和CadB(赖氨酸/尸胺反向转运蛋白)的表达。类ToxR转录激活因子CadC控制cadBA操纵子的表达。通过一种新型信号肽酶I(SPase I)切割试验,我们表明CadC是一种II型单跨膜蛋白(S-SMP),具有胞质DNA结合结构域和周质传感结构域。我们进一步表明,正如长期以来所假设的那样,传感结构域的二聚化是激活cadBA操纵子所必需的。我们使用一种嵌合体证明了这一点,在该嵌合体中,参与维持大肠杆菌杆状形态的II型膜蛋白RodZ的周质结构域取代了CadC传感结构域。由于RodZ周质结构域不能二聚化,该嵌合体不能激活操纵子。然而,用血型糖蛋白A跨膜结构域替换嵌合体的跨膜(TM)结构域会导致膜内二聚化,从而激活操纵子。使用一种低表达方案消除了因蛋白质过度表达而产生的多余TM螺旋二聚化信号,我们显著提高了用于cadBA激活的β-半乳糖苷酶测定的动态范围。因此,可以将血型糖蛋白A结构域的膜内二聚化强度与CadC更强的周质二聚化强度进行定量比较。对于信号肽酶测定,我们在TM螺旋的周质末端插入了一个SPase I切割位点(AAA或AQA)。对于所有测试的TM和周质结构域,切割都高效发生,从而无需使用繁琐的原生质球-蛋白酶K方法进行拓扑结构测定。