Schlegel Felix, Schroeter Aileen, Rudin Markus
Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland.
Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.
Neuroimage. 2015 Aug 1;116:40-9. doi: 10.1016/j.neuroimage.2015.05.013. Epub 2015 May 12.
In recent years, the number of functional MRI (fMRI) studies in mice has been rapidly increasing. Technological improvements provide the sensitivity required to match the high demands on spatial and temporal resolution and to analyze fast and small signal components of the fMRI response. Yet, the interpretation of mouse fMRI data largely relies on assumptions that were uncritically adopted from previous research in humans or rats. Here, we show based on a large dataset employing an innocuous electrical stimulation paradigm, that (1) the shape of the HRF shapes comprises significant transient signal components; correspondingly analysis procedures have to account for this dynamic nature and allow for variable response functions. (2) The effects of the anesthetics are crucial in determining the shape of the hemodynamic response function (HRF) and also influence the spatial specificity of BOLD signal. (3) The dominant systemic confounding contributions elicited by stimulus-evoked cardiovascular responses observed in mouse fMRI when applying block stimuli may be largely avoided by a milder event-related design applying a randomly spaced single pulse train (RSSPT). Thereby the spatial specificity of the fMRI response is largely retained. We conclude that the sensitivity, specificity and interpretability of stimulus-evoked BOLD signals in mice can be improved by combining appropriate stimulation paradigms with analysis procedures that include adapted HRFs.
近年来,小鼠功能性磁共振成像(fMRI)研究的数量一直在迅速增加。技术进步提供了所需的灵敏度,以满足对空间和时间分辨率的高要求,并分析fMRI反应的快速和小信号成分。然而,小鼠fMRI数据的解释很大程度上依赖于从先前人类或大鼠研究中不加批判地采用的假设。在此,我们基于一个采用无害电刺激范式的大型数据集表明:(1)血流动力学反应函数(HRF)的形状包含显著的瞬态信号成分;相应地,分析程序必须考虑这种动态性质,并允许可变的反应函数。(2)麻醉剂的作用对于确定血流动力学反应函数(HRF)的形状至关重要,并且还会影响血氧水平依赖(BOLD)信号的空间特异性。(3)在应用块刺激时,小鼠fMRI中观察到的由刺激诱发的心血管反应引起的主要全身混杂因素,可通过应用随机间隔单脉冲序列(RSSPT)的较温和事件相关设计在很大程度上避免。由此,fMRI反应的空间特异性在很大程度上得以保留。我们得出结论,通过将适当的刺激范式与包括适配HRF的分析程序相结合,可以提高小鼠中刺激诱发的BOLD信号的灵敏度、特异性和可解释性。