Suppr超能文献

纹状体在大脑前网络中动态和稳定的预测编码的核心作用,用于嗅觉强化学习。

Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning.

机构信息

Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.

Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.

出版信息

Nat Commun. 2022 Jun 8;13(1):3305. doi: 10.1038/s41467-022-30978-1.

Abstract

Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.

摘要

确定负责认知的回路,并理解其嵌入的计算,这是神经科学的一个挑战。我们在这里建立了一个分层的跨尺度方法,从行为建模和在执行任务的小鼠中的 fMRI,到细胞记录,以分离局部网络对嗅觉强化学习的贡献。在中尺度上,fMRI 确定了一个功能上的嗅觉纹状体网络,该网络与高级皮质区域动态相互作用。虽然初级嗅觉皮层分别只贡献了一些价值成分,但腹侧纹状体的下游嗅结节全面表达了奖励预测、其动态更新和预测误差成分。在嗅结节中,记录揭示了两个具有非冗余奖励预测编码方案的潜在神经元群体。一个群体通过神经元的分布式活动集体产生稳定的预测;在另一个群体中,神经元单独编码价值,并动态整合不确定结果的近期历史。这些发现验证了一种跨尺度的方法,用于在啮齿动物中对更高认知功能的机制进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b44/9177857/46f862e29d0a/41467_2022_30978_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验