Department of Structural Biology, VIB, Brussels, Belgium.
PLoS Comput Biol. 2012;8(7):e1002606. doi: 10.1371/journal.pcbi.1002606. Epub 2012 Jul 12.
The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.
健康的微生物组在个体内部和个体之间表现出显著的可变性。除了外部暴露,微生物居民之间的生态关系(包括对立和共生关系)也是这种变化的重要贡献者。因此,评估微生物之间可能存在的关系并确定其潜在原因是很有意义的。最初的人类微生物组计划(HMP)队列,由 239 个人和 18 个不同的微生物栖息地组成,为检测、编目和分析这种关系提供了前所未有的资源。在这里,我们应用了一种基于多种相似性度量的集成方法,并结合广义增强线性模型(GBLMs),对该队列的分类标记(16S rRNA 基因)谱进行了分析,结果得到了一个由 3005 个显著共现和共排斥关系组成的全球网络,这些关系存在于整个人类微生物组中的 197 个类群之间。该网络揭示了强烈的生态位特化,大多数微生物关联发生在身体部位内,并且存在一些伴随的身体部位间关系。口腔咽部分区的微生物群落分为三个不同的栖息地,它们本身对肠道微生物群落的组成没有直接影响。相反,像阴道这样的生态位几乎没有分解成特定区域的相互作用。个体相互作用的基础是多种不同的机制,一些机制如龈下斑块中卟啉单胞菌科成员和链球菌的共排斥作用得到了已知生化依赖性的支持。这些差异在广泛的系统发育群体中也存在差异,例如芽孢杆菌和梭菌,它们都富含从其他类群中排除的分类群。在比较细菌之间的系统发育和功能相似性时,我们发现主要的共生类群(如肠道中的普雷沃氏菌科和拟杆菌属)经常竞争,而潜在的病原体(如牙菌斑中的密螺旋体和普雷沃氏菌属)更有可能在互补的生态位中共存。因此,这种方法为未来人类微生物组微生物生态学的有针对性的机制研究开辟了新的机会。