Suppr超能文献

OncoFinder 算法可最大限度减少转录组分析高通量方法引入的误差。

The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis.

机构信息

Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow, Russia ; Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia ; Pathway Pharmaceuticals Wan Chai, Hong Kong.

Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia ; Pathway Pharmaceuticals Wan Chai, Hong Kong.

出版信息

Front Mol Biosci. 2014 Aug 26;1:8. doi: 10.3389/fmolb.2014.00008. eCollection 2014.

Abstract

The diversity of the installed sequencing and microarray equipment make it increasingly difficult to compare and analyze the gene expression datasets obtained using the different methods. Many applications requiring high-quality and low error rates cannot make use of available data using traditional analytical approaches. Recently, we proposed a new concept of signalome-wide analysis of functional changes in the intracellular pathways termed OncoFinder, a bioinformatic tool for quantitative estimation of the signaling pathway activation (SPA). We also developed methods to compare the gene expression data obtained using multiple platforms and minimizing the error rates by mapping the gene expression data onto the known and custom signaling pathways. This technique for the first time makes it possible to analyze the functional features of intracellular regulation on a mathematical basis. In this study we show that the OncoFinder method significantly reduces the errors introduced by transcriptome-wide experimental techniques. We compared the gene expression data for the same biological samples obtained by both the next generation sequencing (NGS) and microarray methods. For these different techniques we demonstrate that there is virtually no correlation between the gene expression values for all datasets analyzed (R (2) < 0.1). In contrast, when the OncoFinder algorithm is applied to the data we observed clear-cut correlations between the NGS and microarray gene expression datasets. The SPA profiles obtained using NGS and microarray techniques were almost identical for the same biological samples allowing for the platform-agnostic analytical applications. We conclude that this feature of the OncoFinder enables to characterize the functional states of the transcriptomes and interactomes more accurately as before, which makes OncoFinder a method of choice for many applications including genetics, physiology, biomedicine, and molecular diagnostics.

摘要

所安装的测序和微阵列设备的多样性使得越来越难以比较和分析使用不同方法获得的基因表达数据集。许多需要高质量和低错误率的应用程序无法使用传统分析方法利用现有数据。最近,我们提出了一种新的概念,即信号组学分析,用于全面分析细胞内途径的功能变化,称为 OncoFinder,这是一种用于定量估计信号通路激活(SPA)的生物信息工具。我们还开发了方法来比较使用多个平台获得的基因表达数据,并通过将基因表达数据映射到已知和定制的信号通路来最小化错误率。这种技术首次使得可以在数学基础上分析细胞内调控的功能特征。在这项研究中,我们表明 OncoFinder 方法显著降低了转录组范围实验技术引入的误差。我们比较了使用下一代测序(NGS)和微阵列方法获得的相同生物样本的基因表达数据。对于这些不同的技术,我们证明所有分析数据集的基因表达值之间几乎没有相关性(R(2)<0.1)。相比之下,当将 OncoFinder 算法应用于数据时,我们观察到 NGS 和微阵列基因表达数据集之间存在明显的相关性。使用 NGS 和微阵列技术获得的 SPA 谱对于相同的生物样本几乎相同,允许进行与平台无关的分析应用。我们得出的结论是,OncoFinder 的这一特性能够更准确地描述转录组和相互作用组的功能状态,这使得 OncoFinder 成为许多应用的首选方法,包括遗传学、生理学、生物医学和分子诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9120/4428387/201ab335b18b/fmolb-01-00008-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验