Suppr超能文献

在分子途径层面进行数据聚合可提高实验转录组学和蛋白质组学数据的稳定性。

Data aggregation at the level of molecular pathways improves stability of experimental transcriptomic and proteomic data.

机构信息

a Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, National Research Centre "Kurchatov Institute" , Moscow , Russia.

b Department of R&D, First Oncology Research and Advisory Center , Moscow , Russia.

出版信息

Cell Cycle. 2017 Oct 2;16(19):1810-1823. doi: 10.1080/15384101.2017.1361068. Epub 2017 Aug 21.

Abstract

High throughput technologies opened a new era in biomedicine by enabling massive analysis of gene expression at both RNA and protein levels. Unfortunately, expression data obtained in different experiments are often poorly compatible, even for the same biologic samples. Here, using experimental and bioinformatic investigation of major experimental platforms, we show that aggregation of gene expression data at the level of molecular pathways helps to diminish cross- and intra-platform bias otherwise clearly seen at the level of individual genes. We created a mathematical model of cumulative suppression of data variation that predicts the ideal parameters and the optimal size of a molecular pathway. We compared the abilities to aggregate experimental molecular data for the 5 alternative methods, also evaluated by their capacity to retain meaningful features of biologic samples. The bioinformatic method OncoFinder showed optimal performance in both tests and should be very useful for future cross-platform data analyses.

摘要

高通量技术通过大规模分析 RNA 和蛋白质水平的基因表达,开创了生物医学的新时代。不幸的是,即使对于相同的生物样本,不同实验中获得的表达数据通常也不兼容。在这里,我们使用主要实验平台的实验和生物信息学研究,表明在分子途径水平上聚合基因表达数据有助于减少跨平台和平台内偏差,否则在单个基因水平上可以清楚地看到这些偏差。我们创建了一个累积抑制数据变异的数学模型,该模型可以预测理想的参数和分子途径的最佳大小。我们比较了 5 种替代方法对实验分子数据的聚合能力,还评估了它们保留生物样本有意义特征的能力。生物信息学方法 OncoFinder 在这两项测试中的表现都很出色,对于未来的跨平台数据分析应该非常有用。

相似文献

引用本文的文献

本文引用的文献

3
How to Deal with Batch Effect in Sequential Microarray Experiments?如何处理序列微阵列实验中的批次效应?
Mol Inform. 2010 May 17;29(5):387-93. doi: 10.1002/minf.200900019. Epub 2010 May 14.
5
Common pathway signature in lung and liver fibrosis.肺和肝纤维化中的共同通路特征
Cell Cycle. 2016 Jul 2;15(13):1667-73. doi: 10.1080/15384101.2016.1152435. Epub 2016 Jun 7.
6
Non-canonical programmed cell death mechanisms triggered by natural compounds.天然化合物触发的非典型程序性细胞死亡机制。
Semin Cancer Biol. 2016 Oct;40-41:4-34. doi: 10.1016/j.semcancer.2016.06.001. Epub 2016 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验