QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France.
QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France.
Med Image Anal. 2015 Jul;23(1):84-91. doi: 10.1016/j.media.2015.04.016. Epub 2015 Apr 30.
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods.
肿瘤对治疗的反应在患者之间存在差异。基于治疗过程中的医学图像对肿瘤演变进行患者特异性预测,有助于以非侵入性的方式构建和调整患者的治疗计划。个性化肿瘤生长模型通过基于个体图像估计模型参数来实现患者特异性预测。模型参数通常通过优化基于肿瘤描绘的代价函数来估计。在本文中,我们提出了一个在患者治疗随访背景下用于肿瘤生长预测和肿瘤分割的联合框架。在整个治疗过程中,为了监测肿瘤反应,会获取一系列连续的正电子发射断层扫描(PET)图像。我们建议考虑预测信息,将其与随机游走(RW)算法结合使用,以开发一种用于 PET 图像的自动肿瘤分割方法。此外,我们提出了 RW 的迭代方案,使分割更加高效。此外,所获得的分割应用于模型参数估计过程中,以获得基于肿瘤演变的模型预测。我们通过将获得的肿瘤预测和分割与专家的手动肿瘤描绘进行比较,在 7 名接受放疗的肺癌患者、共 29 次 PET 检查中评估了我们的方法。与最先进的方法相比,我们的系统产生了有希望的结果。