Suppr超能文献

旨在将 Cu-DOTA-trastuzumab PET-CT 和 MRI 与数学模型相结合,预测 HER2 阳性乳腺癌新辅助治疗的反应。

Towards integration of Cu-DOTA-trastuzumab PET-CT and MRI with mathematical modeling to predict response to neoadjuvant therapy in HER2 + breast cancer.

机构信息

Oden Institute for Computational Engineering and Sciences, The University of Texas At Austin, Austin, TX, USA.

Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.

出版信息

Sci Rep. 2020 Nov 25;10(1):20518. doi: 10.1038/s41598-020-77397-0.

Abstract

While targeted therapies exist for human epidermal growth factor receptor 2 positive (HER2 +) breast cancer, HER2 + patients do not always respond to therapy. We present the results of utilizing a biophysical mathematical model to predict tumor response for two HER2 + breast cancer patients treated with the same therapeutic regimen but who achieved different treatment outcomes. Quantitative data from magnetic resonance imaging (MRI) and Cu-DOTA-trastuzumab positron emission tomography (PET) are used to estimate tumor density, perfusion, and distribution of HER2-targeted antibodies for each individual patient. MRI and PET data are collected prior to therapy, and follow-up MRI scans are acquired at a midpoint in therapy. Given these data types, we align the data sets to a common image space to enable model calibration. Once the model is parameterized with these data, we forecast treatment response with and without HER2-targeted therapy. By incorporating targeted therapy into the model, the resulting predictions are able to distinguish between the two different patient responses, increasing the difference in tumor volume change between the two patients by > 40%. This work provides a proof-of-concept strategy for processing and integrating PET and MRI modalities into a predictive, clinical-mathematical framework to provide patient-specific predictions of HER2 + treatment response.

摘要

虽然针对人表皮生长因子受体 2 阳性(HER2+)乳腺癌存在靶向治疗方法,但并非所有 HER2+患者对治疗均有反应。我们呈现了利用生物物理数学模型来预测两名接受相同治疗方案但治疗结果不同的 HER2+乳腺癌患者肿瘤反应的结果。从磁共振成像(MRI)和 Cu-DOTA-曲妥珠单抗正电子发射断层扫描(PET)获得的定量数据用于估计每个患者的肿瘤密度、灌注和 HER2 靶向抗体的分布。在治疗前收集 MRI 和 PET 数据,并在治疗中期进行后续 MRI 扫描。鉴于这些数据类型,我们将数据集对齐到公共图像空间以实现模型校准。一旦使用这些数据对模型进行参数化,我们就可以预测有无 HER2 靶向治疗的治疗反应。通过将靶向治疗纳入模型,预测结果能够区分两种不同的患者反应,使两名患者的肿瘤体积变化差异增加了超过 40%。这项工作为处理和整合 PET 和 MRI 模式到预测性临床数学框架中提供了概念验证策略,以提供针对 HER2+治疗反应的患者特异性预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb7c/7688955/9fa11d57be8c/41598_2020_77397_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验