Suppr超能文献

金属/ MoS₂ 和金属/ WSe₂ 异质结中热电子注入的间接带隙发射。

Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS₂ and Metal/WSe₂ Heterojunctions.

机构信息

‡Department of Electrical and Electronics Engineering, College of Engineering Guindy, Anna University, Chennai Tamil Nadu 600026, India.

出版信息

Nano Lett. 2015 Jun 10;15(6):3977-82. doi: 10.1021/acs.nanolett.5b00885. Epub 2015 May 29.

Abstract

Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition metal dichalcogenides (TMDCs) deposited on various metals (e.g., Cu, Au, Ag), while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2 and subsequently recombine radiatively with minority holes in the TMDC. Since the conduction band at the K-point is 0.5 eV higher than at the Σ-point, a lower Schottky barrier exists for the Σ-point band, making electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wave functions in the metal. This enhancement in the indirect emission only occurs for thick flakes of MoS2 and WSe2 (≥100 nm) and is completely absent in monolayer and few-layer (∼10 nm) flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures, which is consistent with the hot electron injection model.

摘要

过渡金属二卤化物(TMDCs),如 MoS2 和 WSe2,没有悬空键,因此比体半导体更能形成“理想”的肖特基结,体半导体与体金属接触时会产生费米能级钉扎和复合中心,从而抑制电荷转移。在这里,我们观察到沉积在各种金属(如 Cu、Au、Ag)上的过渡金属二卤化物(TMDCs)的间接带隙光致发光增强了 10 倍以上,而直接带隙发射保持不变。我们相信发光的主要机制是来自金属中光激发的热电子,这些电子被注入 MoS2 和 WSe2 的导带中,并随后与 TMDC 中的少数空穴辐射复合。由于 K 点的导带比 Σ 点高 0.5 eV,因此 Σ 点带的肖特基势垒较低,使得电子注入更有利。此外,Σ 带由硫 pz 轨道组成,它与金属中的电子波函数重叠更为显著。这种间接发射的增强仅发生在厚的 MoS2 和 WSe2 薄片(≥100nm)上,而在单层和少层(约 10nm)薄片中完全不存在。在这里,薄片厚度必须超过肖特基结的耗尽宽度,以便在 TMDC 中发生有效的辐射复合。该间接峰的强度在低温下降低,这与热电子注入模型一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验