Suppr超能文献

过渡金属二硫属化物中的普遍费米能级钉扎

Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides.

作者信息

Sotthewes Kai, van Bremen Rik, Dollekamp Edwin, Boulogne Tim, Nowakowski Krystian, Kas Daan, Zandvliet Harold J W, Bampoulis Pantelis

机构信息

Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.

II. Institute of Physics B and JARA-FIT, RWTH-Aachen University, 52056 Aachen, Germany.

出版信息

J Phys Chem C Nanomater Interfaces. 2019 Mar 7;123(9):5411-5420. doi: 10.1021/acs.jpcc.8b10971. Epub 2019 Feb 14.

Abstract

Understanding the electron transport through transition-metal dichalcogenide (TMDC)-based semiconductor/metal junctions is vital for the realization of future TMDC-based (opto-)electronic devices. Despite the bonding in TMDCs being largely constrained within the layers, strong Fermi-level pinning (FLP) was observed in TMDC-based devices, reducing the tunability of the Schottky barrier height. We present evidence that metal-induced gap states (MIGS) are the origin for the large FLP similar to conventional semiconductors. A variety of TMDCs (MoSe, WSe, WS, and MoTe) were investigated using high-spatial-resolution surface characterization techniques, permitting us to distinguish between defected and pristine regions. The Schottky barrier heights on the pristine regions can be explained by MIGS, inducing partial FLP. The FLP strength is further enhanced by disorder-induced gap states induced by transition-metal vacancies or substitutionals at the defected regions. Our findings emphasize the importance of defects on the electron transport properties in TMDC-based devices and confirm the origin of FLP in TMDC-based metal/semiconductor junctions.

摘要

理解通过基于过渡金属二硫属化物(TMDC)的半导体/金属结的电子传输对于实现未来基于TMDC的(光)电子器件至关重要。尽管TMDC中的键合在很大程度上局限于层内,但在基于TMDC的器件中观察到了强烈的费米能级钉扎(FLP),这降低了肖特基势垒高度的可调性。我们提供证据表明,金属诱导能隙态(MIGS)是导致与传统半导体类似的大FLP的根源。使用高空间分辨率表面表征技术对多种TMDC(MoSe、WSe、WS和MoTe)进行了研究,使我们能够区分缺陷区域和原始区域。原始区域上的肖特基势垒高度可以用MIGS来解释,MIGS会导致部分FLP。在缺陷区域,由过渡金属空位或替代原子引起的无序诱导能隙态会进一步增强FLP强度。我们的研究结果强调了缺陷对基于TMDC的器件中电子传输特性的重要性,并证实了基于TMDC的金属/半导体结中FLP的根源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/096b/6410613/b60e33993402/jp-2018-10971c_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验