Device & System Research Center, Samsung Advanced Institute of Technology (SAIT) , 130 Samsung-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16676, Korea.
ACS Nano. 2017 Feb 28;11(2):1588-1596. doi: 10.1021/acsnano.6b07159. Epub 2017 Jan 23.
Electrical metal contacts to two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are found to be the key bottleneck to the realization of high device performance due to strong Fermi level pinning and high contact resistances (R). Until now, Fermi level pinning of monolayer TMDCs has been reported only theoretically, although that of bulk TMDCs has been reported experimentally. Here, we report the experimental study on Fermi level pinning of monolayer MoS and MoTe by interpreting the thermionic emission results. We also quantitatively compared our results with the theoretical simulation results of the monolayer structure as well as the experimental results of the bulk structure. We measured the pinning factor S to be 0.11 and -0.07 for monolayer MoS and MoTe, respectively, suggesting a much stronger Fermi level pinning effect, a Schottky barrier height (SBH) lower than that by theoretical prediction, and interestingly similar pinning energy levels between monolayer and bulk MoS. Our results further imply that metal work functions have very little influence on contact properties of 2D-material-based devices. Moreover, we found that R is exponentially proportional to SBH, and these processing parameters can be controlled sensitively upon chemical doping into the 2D materials. These findings provide a practical guideline for depinning Fermi level at the 2D interfaces so that polarity control of TMDC-based semiconductors can be achieved efficiently.
金属与二维(2D)过渡金属二卤化物(TMDC)的电接触被发现是实现高性能器件的关键瓶颈,这是由于费米能级钉扎和高接触电阻(R)造成的。到目前为止,单层 TMDC 的费米能级钉扎仅在理论上有报道,尽管体相 TMDC 的费米能级钉扎已经在实验上有报道。在这里,我们通过解释热电子发射结果,报道了对单层 MoS 和 MoTe 费米能级钉扎的实验研究。我们还将我们的实验结果与单层结构的理论模拟结果以及体相结构的实验结果进行了定量比较。我们测量的钉扎因子 S 分别为单层 MoS 和 MoTe 的 0.11 和-0.07,这表明费米能级钉扎效应更强,肖特基势垒高度(SBH)低于理论预测,而且有趣的是,单层和体相 MoS 之间的钉扎能级相似。我们的结果进一步表明,金属功函数对二维材料基器件的接触性能几乎没有影响。此外,我们发现 R 与 SBH 呈指数关系,并且这些工艺参数可以通过对二维材料进行化学掺杂来敏感地控制。这些发现为在 2D 界面解钉扎费米能级提供了实用的指导,从而可以有效地控制 TMDC 基半导体的极性。