Suppr超能文献

人类和哺乳动物进化中基因组结构变异的适应性潜力。

Adaptive potential of genomic structural variation in human and mammalian evolution.

作者信息

Radke David W, Lee Charles

出版信息

Brief Funct Genomics. 2015 Sep;14(5):358-68. doi: 10.1093/bfgp/elv019. Epub 2015 May 23.

Abstract

Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.

摘要

由于表型创新必须具有遗传可遗传性才能推动生物进化,因此将新的突变事件以及现存的遗传变异视为其产生的来源是很自然的。先前的研究已经鉴定出一些单核苷酸多态性,这些多态性是生物体中一部分适应性性状的基础。然而,另一类众所周知的变异,即基因组结构变异,由于在不同基因组位置具有各种可能的改变类型(缺失、插入、重复等)且长度可变,可能具有更大的产生适应性表型的潜力。正是从这些剧烈的基因组改变以及对其表型后果的选择中,才可能衍生出导致生物多样化的适应性变化。在这篇综述中,我们利用对人类和其他哺乳动物的研究,重点介绍了结构变异产生的表型变异如何在种群中变得具有适应性并 potentially enable biological diversification(此处原文有误,正确表述可能是“potentially enable biological diversification”,直译为“潜在地促成生物多样化”)的例子。由结构变异引起的表型变化将根据它们对生物体代谢过程、免疫反应和身体特征的直接影响来描述。因此,对分离的结构变异的种群动态研究可以为理解当前和历史生物多样化提供一个窗口。

相似文献

1
Adaptive potential of genomic structural variation in human and mammalian evolution.
Brief Funct Genomics. 2015 Sep;14(5):358-68. doi: 10.1093/bfgp/elv019. Epub 2015 May 23.
4
Genomics of Parallel Experimental Evolution in Drosophila.
Mol Biol Evol. 2017 Apr 1;34(4):831-842. doi: 10.1093/molbev/msw282.
5
A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
Biol Rev Camb Philos Soc. 2007 May;82(2):173-211. doi: 10.1111/j.1469-185X.2006.00004.x.
7
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health.
J Mol Evol. 2020 Jan;88(1):104-119. doi: 10.1007/s00239-019-09911-6. Epub 2019 Sep 14.
8
A decade of structural variants: description, history and methods to detect structural variation.
Brief Funct Genomics. 2015 Sep;14(5):305-14. doi: 10.1093/bfgp/elv014. Epub 2015 Apr 15.
9
Identifying adaptive alleles in the human genome: from selection mapping to functional validation.
Hum Genet. 2021 Feb;140(2):241-276. doi: 10.1007/s00439-020-02206-7. Epub 2020 Jul 29.
10
How Important Are Structural Variants for Speciation?
Genes (Basel). 2021 Jul 17;12(7):1084. doi: 10.3390/genes12071084.

引用本文的文献

3
The impact of FASTQ and alignment read order on structural variant calling from long-read sequencing data.
PeerJ. 2024 Mar 15;12:e17101. doi: 10.7717/peerj.17101. eCollection 2024.
4
Recent advances and current challenges in population genomics of structural variation in animals and plants.
Front Genet. 2022 Nov 29;13:1060898. doi: 10.3389/fgene.2022.1060898. eCollection 2022.
6
The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi.
Genes (Basel). 2021 May 8;12(5):699. doi: 10.3390/genes12050699.
7
Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing.
Front Genet. 2021 Feb 4;12:550676. doi: 10.3389/fgene.2021.550676. eCollection 2021.
8
Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift.
Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13446-13451. doi: 10.1073/pnas.1901093116. Epub 2019 Jun 17.
9
SCRaMbLE generates evolved yeasts with increased alkali tolerance.
Microb Cell Fact. 2019 Mar 11;18(1):52. doi: 10.1186/s12934-019-1102-4.

本文引用的文献

1
Complex and multi-allelic copy number variation in human disease.
Brief Funct Genomics. 2015 Sep;14(5):329-38. doi: 10.1093/bfgp/elv028. Epub 2015 Jul 9.
2
Human inversions and their functional consequences.
Brief Funct Genomics. 2015 Sep;14(5):369-79. doi: 10.1093/bfgp/elv020. Epub 2015 May 20.
3
Large multiallelic copy number variations in humans.
Nat Genet. 2015 Mar;47(3):296-303. doi: 10.1038/ng.3200. Epub 2015 Jan 26.
4
Analysis of variable retroduplications in human populations suggests coupling of retrotransposition to cell division.
Genome Res. 2013 Dec;23(12):2042-52. doi: 10.1101/gr.154625.113. Epub 2013 Sep 11.
5
Primate genome architecture influences structural variation mechanisms and functional consequences.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15764-9. doi: 10.1073/pnas.1305904110. Epub 2013 Sep 6.
6
Evolution and diversity of copy number variation in the great ape lineage.
Genome Res. 2013 Sep;23(9):1373-82. doi: 10.1101/gr.158543.113. Epub 2013 Jul 3.
10
Modeling recent human evolution in mice by expression of a selected EDAR variant.
Cell. 2013 Feb 14;152(4):691-702. doi: 10.1016/j.cell.2013.01.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验