宏基因组学与时间序列分析:揭示微生物群落动态。

Metagenomics meets time series analysis: unraveling microbial community dynamics.

机构信息

Department of Microbiology and Immunology, Rega Institute KU Leuven, Leuven, Belgium; VIB Center for the Biology of Disease, VIB, Belgium; Laboratory of Microbiology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.

出版信息

Curr Opin Microbiol. 2015 Jun;25:56-66. doi: 10.1016/j.mib.2015.04.004. Epub 2015 May 22.

Abstract

The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic patterns, help to build predictive models or, on the contrary, quantify irregularities that make community behavior unpredictable. Microbial communities can change abruptly in response to small perturbations, linked to changing conditions or the presence of multiple stable states. With sufficient samples or time points, such alternative states can be detected. In addition, temporal variation of microbial interactions can be captured with time-varying networks. Here, we apply these techniques on multiple longitudinal datasets to illustrate their potential for microbiome research.

摘要

最近微生物时间序列研究的数量增加,为从世界海洋到人类微生物组的微生物群落的稳定性和动态提供了新的见解。专门的时间序列分析工具可以充分利用这些数据。这些工具可以揭示周期性模式,帮助建立预测模型,或者相反,量化使群落行为不可预测的不规则性。微生物群落可以对小的扰动做出突然的变化,这些变化与条件变化或多个稳定状态的存在有关。有了足够的样本或时间点,就可以检测到这些替代状态。此外,随时间变化的网络可以捕捉微生物相互作用的时间变化。在这里,我们将这些技术应用于多个纵向数据集,以说明它们在微生物组研究中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索