Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Espira Inc., 825 N 300 W Suite N-223, Salt Lake City, UT 84103, USA.
Sensors (Basel). 2015 May 22;15(5):12034-52. doi: 10.3390/s150512034.
In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10⁸ guanine tags per secondary bead (7.5 x 10⁶ biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the protocol for detection of E. coli O157:H7 seeded in waste water effluent samples.
在本文中,我们报告了使用抗体功能化的初级(磁性)珠用于捕获和聚鸟嘌呤(polyG)寡核苷酸功能化的次级(聚苯乙烯)珠作为电化学标签,对大肠杆菌 O157:H7 进行超灵敏间接电化学检测。真空过滤与大肠杆菌 O157:H7 特异性抗体修饰的磁性珠结合,用于从 100 mL 样品中提取大肠杆菌 O157:H7。然后,将磁性珠偶联的大肠杆菌 O157:H7 细胞附着到 polyG 功能化的次级珠上,形成三明治复合物(磁性珠/大肠杆菌次级珠)。虽然基于免疫的磁性珠捕获已得到很好的描述,但寡核苷酸功能化的次级珠的使用有助于将放大和潜在的多重检测纳入系统中。抗体功能化的次级珠可以很容易地用不同的抗体进行修饰,以从同一样品中检测其他病原体,并实现潜在的多重检测。次级珠上的 polyG 可将信号放大高达 10⁸ 个鸟嘌呤标签/次级珠(次级珠上每个 7.5 x 10⁶ 生物素-FITC,每个寡核苷酸 20 个鸟嘌呤)结合到靶标(大肠杆菌)上。功能化的单链 DNA 探针修饰的还原氧化石墨烯修饰的玻碳电极用于结合次级珠上的 polyG。荧光成像用于确认复合物与电极表面的杂交。差分脉冲伏安法(DPV)用于使用三(2,2'-联吡啶)钌(II)(Ru(bpy)3(2+))作为介体来量化参与杂交事件的 polyG 的量。polyG 信号的量可以与样品中大肠杆菌 O157:H7 的量相关联。该方法能够检测到低至 3 CFU/100 mL 的大肠杆菌 O157:H7 浓度,比文献中报道的最灵敏技术低 67 倍。这项工作的信噪比为 3。我们还展示了该方案用于检测废水流出物样品中接种的大肠杆菌 O157:H7 的用途。