Castillo-Torres Keisha Y, McLamore Eric S, Arnold David P
Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering; University of Florida, Gainesville, FL 32611, USA.
Institute of Food and Agricultural Sciences, Department of Agricultural and Biological Engineering; University of Florida, Gainesville, FL 32611, USA.
Micromachines (Basel). 2019 Dec 22;11(1):16. doi: 10.3390/mi11010016.
The long-term aim of this work is to develop a biosensing system that rapidly detects bacterial targets of interest, such as , in drinking and recreational water quality monitoring. For these applications, a standard sample size is 100 mL, which is quite large for magnetic separation microfluidic analysis platforms that typically function with <20 µL/s throughput. Here, we report the use of 1.5-µm-diameter magnetic microdisc to selectively tag target bacteria, and a high-throughput microfluidic device that can potentially isolate the magnetically tagged bacteria from 100 mL water samples in less than 15 min. Simulations and experiments show ~90% capture efficiencies of magnetic particles at flow rates up to 120 µL/s. Also, the platform enables the magnetic microdiscs/bacteria conjugates to be directly imaged, providing a path for quantitative assay.
这项工作的长期目标是开发一种生物传感系统,用于在饮用水和娱乐用水水质监测中快速检测感兴趣的细菌靶标,例如 。对于这些应用,标准样本量为100 mL,这对于通常以小于20 µL/s的通量运行的磁分离微流控分析平台来说相当大。在此,我们报告了使用直径为1.5 µm的磁性微盘选择性标记靶细菌,以及一种高通量微流控装置,该装置有可能在不到15分钟的时间内从100 mL水样中分离出磁性标记的细菌。模拟和实验表明,在流速高达120 µL/s时,磁性颗粒的捕获效率约为90%。此外,该平台能够直接对磁性微盘/细菌结合物进行成像,为定量分析提供了一条途径。