Suppr超能文献

结合无线神经记录与视频捕捉用于自然步态分析。

Combining Wireless Neural Recording and Video Capture for the Analysis of Natural Gait.

作者信息

Foster Justin D, Freifeld Oren, Nuyujukian Paul, Ryu Stephen I, Black Michael J, Shenoy Krishna V

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA.

Division of Applied Mathematics, Brown University, Providence, RI 02912 USA.

出版信息

Int IEEE EMBS Conf Neural Eng. 2011 Apr-May;2011:613-616. doi: 10.1109/NER.2011.5910623.

Abstract

Neural control of movement is typically studied in constrained environments where there is a reduced set of possible behaviors. This constraint may unintentionally limit the applicability of findings to the generalized case of unconstrained behavior. We hypothesize that examining the unconstrained state across multiple behavioral contexts will lead to new insights into the neural control of movement and help advance the design of neural prosthetic decode algorithms. However, to pursue electrophysiological studies in such a manner requires a more flexible framework for experimentation. We propose that head-mounted neural recording systems with wireless data transmission, combined with markerless computer-vision based motion tracking, will enable new, less constrained experiments. As a proof-of-concept, we recorded and wirelessly transmitted broadband neural data from 32 electrodes in premotor cortex while acquiring single-camera video of a rhesus macaque walking on a treadmill. We demonstrate the ability to extract behavioral kinematics using an automated computer vision algorithm without use of markers and to predict kinematics from the neural data. Together these advances suggest that a new class of "freely moving monkey" experiments should be possible and should help broaden our understanding of the neural control of movement.

摘要

对运动的神经控制通常是在受限环境中进行研究的,在这种环境下可能的行为组合较少。这种限制可能会无意中限制研究结果在无约束行为这一普遍情况下的适用性。我们假设,在多种行为背景下研究无约束状态将为运动的神经控制带来新的见解,并有助于推进神经假体解码算法的设计。然而,要以这种方式进行电生理研究,需要一个更灵活的实验框架。我们提出,具有无线数据传输功能的头戴式神经记录系统,结合基于无标记计算机视觉的运动跟踪技术,将能够开展新的、限制较少的实验。作为概念验证,我们在恒河猴在跑步机上行走时,记录并无线传输了来自运动前皮层32个电极的宽带神经数据,同时获取了单摄像头视频。我们展示了使用自动计算机视觉算法在不使用标记的情况下提取行为运动学特征以及从神经数据预测运动学特征的能力。这些进展共同表明,一类新的“自由移动猴子”实验应该是可行的,并且应该有助于拓宽我们对运动神经控制的理解。

相似文献

1
Combining Wireless Neural Recording and Video Capture for the Analysis of Natural Gait.
Int IEEE EMBS Conf Neural Eng. 2011 Apr-May;2011:613-616. doi: 10.1109/NER.2011.5910623.
2
A freely-moving monkey treadmill model.
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.
3
A framework for relating neural activity to freely moving behavior.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2736-9. doi: 10.1109/EMBC.2012.6346530.
4
HermesC: low-power wireless neural recording system for freely moving primates.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):330-8. doi: 10.1109/TNSRE.2009.2023293. Epub 2009 Jun 2.
5
Estimation and validation of temporal gait features using a markerless 2D video system.
Comput Methods Programs Biomed. 2019 Jul;175:45-51. doi: 10.1016/j.cmpb.2019.04.002. Epub 2019 Apr 2.
6
Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio.
Nat Commun. 2020 Sep 11;11(1):4560. doi: 10.1038/s41467-020-18441-5.
7
A markerless platform for ambulatory systems neuroscience.
Sci Robot. 2021 Sep 8;6(58):eabj7045. doi: 10.1126/scirobotics.abj7045.
8
A wireless transmission neural interface system for unconstrained non-human primates.
J Neural Eng. 2015 Oct;12(5):056005. doi: 10.1088/1741-2560/12/5/056005. Epub 2015 Aug 13.
9
HermesB: a continuous neural recording system for freely behaving primates.
IEEE Trans Biomed Eng. 2007 Nov;54(11):2037-50. doi: 10.1109/TBME.2007.895753.
10
3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision.
Front Bioeng Biotechnol. 2020 Mar 5;8:181. doi: 10.3389/fbioe.2020.00181. eCollection 2020.

引用本文的文献

1
A multidimensional approach to the self in non-human animals through the Pattern Theory of Self.
Front Psychol. 2025 Apr 9;16:1561420. doi: 10.3389/fpsyg.2025.1561420. eCollection 2025.
2
Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
IEEE Trans Biomed Eng. 2021 Jul;68(7):2313-2325. doi: 10.1109/TBME.2021.3069119. Epub 2021 Jun 17.
3
A Robust Real-Time Detecting and Tracking Framework for Multiple Kinds of Unmarked Object.
Sensors (Basel). 2019 Dec 18;20(1):2. doi: 10.3390/s20010002.
4
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Med Biol Eng Comput. 2016 Jan;54(1):45-62. doi: 10.1007/s11517-015-1431-3. Epub 2016 Jan 22.
5
Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics.
J Neurophysiol. 2015 Sep;114(3):1500-12. doi: 10.1152/jn.00293.2014. Epub 2015 Jul 1.
6
Brain-controlled muscle stimulation for the restoration of motor function.
Neurobiol Dis. 2015 Nov;83:180-90. doi: 10.1016/j.nbd.2014.10.014. Epub 2014 Oct 28.
7
Neural population dynamics during reaching.
Nature. 2012 Jul 5;487(7405):51-6. doi: 10.1038/nature11129.
8
Simbios: an NIH national center for physics-based simulation of biological structures.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):186-9. doi: 10.1136/amiajnl-2011-000488. Epub 2011 Nov 10.

本文引用的文献

1
HermesD: A High-Rate Long-Range Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications.
IEEE Trans Biomed Circuits Syst. 2010 Jun;4(3):181-91. doi: 10.1109/TBCAS.2010.2044573.
2
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
Challenges and opportunities for next-generation intracortically based neural prostheses.
IEEE Trans Biomed Eng. 2011 Jul;58(7):1891-9. doi: 10.1109/TBME.2011.2107553. Epub 2011 Jan 20.
4
Decoding complete reach and grasp actions from local primary motor cortex populations.
J Neurosci. 2010 Jul 21;30(29):9659-69. doi: 10.1523/JNEUROSCI.5443-09.2010.
5
Autonomous head-mounted electrophysiology systems for freely behaving primates.
Curr Opin Neurobiol. 2010 Oct;20(5):676-86. doi: 10.1016/j.conb.2010.06.007. Epub 2010 Jul 23.
6
Single-neuron stability during repeated reaching in macaque premotor cortex.
J Neurosci. 2007 Oct 3;27(40):10742-50. doi: 10.1523/JNEUROSCI.0959-07.2007.
7
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1124-37. doi: 10.1109/TPAMI.2004.60.
8
What energy functions can be minimized via graph cuts?
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):147-59. doi: 10.1109/TPAMI.2004.1262177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验