Bala Praneet C, Eisenreich Benjamin R, Yoo Seng Bum Michael, Hayden Benjamin Y, Park Hyun Soo, Zimmermann Jan
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
Nat Commun. 2020 Sep 11;11(1):4560. doi: 10.1038/s41467-020-18441-5.
The rhesus macaque is an important model species in several branches of science, including neuroscience, psychology, ethology, and medicine. The utility of the macaque model would be greatly enhanced by the ability to precisely measure behavior in freely moving conditions. Existing approaches do not provide sufficient tracking. Here, we describe OpenMonkeyStudio, a deep learning-based markerless motion capture system for estimating 3D pose in freely moving macaques in large unconstrained environments. Our system makes use of 62 machine vision cameras that encircle an open 2.45 m × 2.45 m × 2.75 m enclosure. The resulting multiview image streams allow for data augmentation via 3D-reconstruction of annotated images to train a robust view-invariant deep neural network. This view invariance represents an important advance over previous markerless 2D tracking approaches, and allows fully automatic pose inference on unconstrained natural motion. We show that OpenMonkeyStudio can be used to accurately recognize actions and track social interactions.
恒河猴是神经科学、心理学、动物行为学和医学等多个科学领域的重要模式物种。若能在自由活动条件下精确测量行为,恒河猴模型的效用将大大提高。现有方法无法提供足够的跟踪。在此,我们介绍OpenMonkeyStudio,这是一种基于深度学习的无标记运动捕捉系统,用于在大型无约束环境中估计自由活动恒河猴的三维姿态。我们的系统使用62台机器视觉相机环绕一个2.45米×2.45米×2.75米的开放式围栏。由此产生的多视图图像流允许通过对带注释图像的三维重建进行数据增强,以训练一个强大的视图不变深度神经网络。这种视图不变性是相对于以前的无标记二维跟踪方法的一个重要进步,并允许对无约束自然运动进行全自动姿态推断。我们表明,OpenMonkeyStudio可用于准确识别动作和跟踪社交互动。