Suppr超能文献

使用5'-磷酸-2'-脱氧核糖胞苷酰核糖腺苷作为tRNA化学氨酰化的简便途径。

The use of 5'-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA.

作者信息

Robertson S A, Noren C J, Anthony-Cahill S J, Griffith M C, Schultz P G

机构信息

Department of Chemistry, University of California, Berkeley 94720.

出版信息

Nucleic Acids Res. 1989 Dec 11;17(23):9649-60. doi: 10.1093/nar/17.23.9649.

Abstract

Methodology is described for the synthesis and chemical aminoacylation of the hybrid dinucleotide 5'-phospho-2'-deoxyribocytidylylriboadenosine (pdCpA). Ligation of aminoacylated pdCpA to a truncated amber suppressor tRNACUA (-CA) using T4 RNA ligase generates an aminoacylated suppressor tRNA which can be used for site-specific incorporation of unnatural amino acids into proteins. Both the ligation and in vitro suppression efficiencies are the same when either pCpA or pdCpA is used. The use of deoxycytidine simplifies the chemistry involved in the synthesis of the dinucleotide pCpA. In addition, these results demonstrate that ribocytidine is not required for recognition of the aminoacylated tRNA during protein synthesis.

摘要

本文描述了杂交二核苷酸5'-磷酸-2'-脱氧核糖胞苷酰核糖腺苷(pdCpA)的合成及化学氨酰化方法。使用T4 RNA连接酶将氨酰化的pdCpA连接到截短的琥珀色抑制tRNACUA(-CA)上,生成氨酰化抑制tRNA,可用于将非天然氨基酸位点特异性掺入蛋白质中。当使用pCpA或pdCpA时,连接效率和体外抑制效率相同。脱氧胞苷的使用简化了二核苷酸pCpA合成中涉及的化学过程。此外,这些结果表明,蛋白质合成过程中氨酰化tRNA的识别不需要核糖胞苷。

相似文献

1
The use of 5'-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA.
Nucleic Acids Res. 1989 Dec 11;17(23):9649-60. doi: 10.1093/nar/17.23.9649.
2
Facile aminoacylation of pdCpA dinucleotide with a nonnatural amino acid in cationic micelle.
Chem Commun (Camb). 2003 Sep 7(17):2242-3. doi: 10.1039/b306011j.
3
Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA.
Bioconjug Chem. 2014 Nov 19;25(11):2086-91. doi: 10.1021/bc500441b. Epub 2014 Nov 3.
5
The N-pentenoyl protecting group for aminoacyl-tRNAs.
Methods. 2005 Jul;36(3):245-51. doi: 10.1016/j.ymeth.2005.04.002.
6
"Chemical aminoacylation" of tRNA's.
J Biol Chem. 1978 Jul 10;253(13):4517-20.
7
In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site-specific mutagenesis.
Proc Natl Acad Sci U S A. 1987 Apr;84(8):2185-8. doi: 10.1073/pnas.84.8.2185.
9
Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives.
Bioorg Med Chem. 2012 Apr 15;20(8):2679-89. doi: 10.1016/j.bmc.2012.02.024. Epub 2012 Feb 15.
10
Synthesis of pdCpAs and transfer RNAs activated with derivatives of aspartic acid and cysteine.
Bioorg Med Chem. 2008 Oct 1;16(19):9023-31. doi: 10.1016/j.bmc.2008.08.036. Epub 2008 Aug 22.

引用本文的文献

1
Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.
Chem Rev. 2025 Feb 12;125(3):1303-1331. doi: 10.1021/acs.chemrev.4c00126. Epub 2025 Jan 22.
2
Reprogramming the genetic code with flexizymes.
Nat Rev Chem. 2024 Dec;8(12):879-892. doi: 10.1038/s41570-024-00656-5. Epub 2024 Oct 21.
3
Synthesis at the Interface of Chemistry and Biology.
Acc Chem Res. 2024 Sep 17;57(18):2631-2642. doi: 10.1021/acs.accounts.4c00320. Epub 2024 Aug 28.
4
Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Dihydrofolate Reductase.
J Am Chem Soc. 2023 Nov 1;145(43):23600-23608. doi: 10.1021/jacs.3c07524. Epub 2023 Oct 23.
5
Traceless Staudinger Ligation to Access Stable Aminoacyl- or Peptidyl-Dinucleotide.
ACS Omega. 2023 Jan 17;8(4):3850-3860. doi: 10.1021/acsomega.2c06135. eCollection 2023 Jan 31.
6
Genetic Code Expansion Through Quadruplet Codon Decoding.
J Mol Biol. 2022 Apr 30;434(8):167346. doi: 10.1016/j.jmb.2021.167346. Epub 2021 Nov 8.
7
Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes.
J Mol Biol. 2022 Apr 30;434(8):167211. doi: 10.1016/j.jmb.2021.167211. Epub 2021 Aug 20.
8
Hijacking Translation Initiation for Synthetic Biology.
Chembiochem. 2020 May 15;21(10):1387-1396. doi: 10.1002/cbic.202000017. Epub 2020 Mar 2.
9
Expanding the limits of the second genetic code with ribozymes.
Nat Commun. 2019 Nov 8;10(1):5097. doi: 10.1038/s41467-019-12916-w.
10
Engineering Translation Components Improve Incorporation of Exotic Amino Acids.
Int J Mol Sci. 2019 Jan 26;20(3):522. doi: 10.3390/ijms20030522.

本文引用的文献

1
Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
Biochemistry. 1982 Aug 17;21(17):3921-6. doi: 10.1021/bi00260a003.
3
Fluorescent labelling of tRNA and oligodeoxynucleotides using T4 RNA ligase.
Nucleic Acids Res. 1984 Feb 24;12(4):1791-810. doi: 10.1093/nar/12.4.1791.
5
Isolation and characterization of ribonuclease I mutants of Escherichia coli.
J Mol Biol. 1966 Mar;16(1):67-84. doi: 10.1016/s0022-2836(66)80263-2.
7
Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate.
Antimicrob Agents Chemother. 1972 Apr;1(4):283-8. doi: 10.1128/AAC.1.4.283.
8
Location of the adenylylation site in T4 RNA ligase.
Eur J Biochem. 1985 Mar 1;147(2):325-9. doi: 10.1111/j.1432-1033.1985.tb08753.x.
10
A general method for site-specific incorporation of unnatural amino acids into proteins.
Science. 1989 Apr 14;244(4901):182-8. doi: 10.1126/science.2649980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验