Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Lab Chip. 2015 Jul 7;15(13):2864-71. doi: 10.1039/c5lc00294j. Epub 2015 May 29.
Colloidal systems exhibit intriguing assembly phenomena with impact in a wide variety of technological fields. The use of magnetically responsive colloids allows one to exploit interactions with an anisotropic dipolar nature. Here, we reveal magnetic interfacial rotaphoresis - a magnetically-induced rotational excitation that imposes a translational motion on colloids by a strong interaction with a solid-liquid interface - as a means to transport, disperse, and order dense colloidal assemblies. By balancing magnetic dipolar and hydrodynamic interactions at a symmetry-breaking interface, rotaphoresis effectuates a translational dispersive motion of the colloids and surprisingly transforms large and dense multilayer assemblies into single-particle layers with quasi-hexagonal ordering within seconds and with velocities of mm s(-1). We demonstrate the application of interfacial rotaphoresis to enhance molecular target capture, showing an increase of the molecular capture rate by more than an order of magnitude.
胶体系统表现出有趣的组装现象,对各种技术领域都有影响。使用对磁响应的胶体可以利用具有各向异性偶极性质的相互作用。在这里,我们揭示了磁界面旋流电泳——一种通过与固液界面的强相互作用对胶体施加旋转激励的磁诱导旋转激发,作为一种用于传输、分散和有序密集胶体组装体的方法。通过在破坏对称性的界面上平衡磁偶极和流体动力学相互作用,旋流电泳效应实现了胶体的平移分散运动,令人惊讶的是,它在几秒钟内将大而密集的多层组装体转化为具有准六边形有序的单粒子层,速度可达毫米每秒。我们演示了界面旋流电泳在增强分子靶捕获方面的应用,显示分子捕获率提高了一个数量级以上。