Nanobioscience Constellation, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY 12203, USA.
Exp Biol Med (Maywood). 2022 Dec;247(23):2142-2151. doi: 10.1177/15353702221114099. Epub 2022 Aug 16.
Spinal cord injury (SCI) remains a life-altering event that devastates those injured and the families that support them. Numerous laboratories are engaged in preclinical and clinical trials to repair the injured spinal cord with stem cell-derived therapeutics. A new developmental paradigm reveals early bifurcation of brain or trunk neurons in mammals via neuromesodermal progenitors (NMPs) relevant to therapies requiring homotypic spinal cord neural populations. Human-induced pluripotent stem cell (hiPSC) NMP-derived spinal motor neurons generated following this natural developmental route demonstrate robust survival when delivered as suspension grafts or as preformed encapsulated neuronal circuitry when transplanted into a rat C4-C5 hemicontusion injury site. Use of matured neurons avoids differentiation challenges of using pluripotent hiPSC or multipotent neural stem cell (NSC) or mesenchymal stem cell therapeutics. In this review, we provide an injury to therapeutics overview focusing on how stem cell and developmental fields are merging to generate exquisitely matched spinal motor neurons for SCI therapeutic studies. The complexity of the SCI microenvironment generated by trauma to neurons and vasculature, along with infiltrating inflammatory cells and scarring, underlies the challenging cytokine microenvironment that therapeutic cells encounter. An overview of evolving but limited stem cell-based SCI therapies that have progressed from preclinical to clinical trials illustrates the challenges and need for additional stem cell-based therapeutic approaches. The focus here on neurons describes how NMP-based neurotechnologies are advancing parallel strategies such as transplantation of preformed neuronal circuitry as well as human gastruloid multicellular models of trunk central and peripheral nervous system integration with organs. NMP-derived neurons are expected to be powerful drivers of the next generation of SCI therapeutics and integrate well with combination therapies that may utilize alternate biomimetic scaffolds for bridging injuries or flexible biodegradable electronics for electrostimulation.
脊髓损伤 (SCI) 仍然是改变生活的事件,它摧毁了受伤者和支持他们的家庭。许多实验室都在进行临床前和临床试验,以使用干细胞衍生的疗法来修复受损的脊髓。一个新的发展范例揭示了哺乳动物中脑或躯干神经元的早期分叉,通过与需要同质脊髓神经群体的治疗相关的神经中胚层祖细胞 (NMP)。按照这种自然发育途径产生的人诱导多能干细胞 (hiPSC) NMP 衍生的脊髓运动神经元在作为悬浮移植物递送时或在移植到大鼠 C4-C5 半挫伤损伤部位时作为预先形成的封装神经元电路时表现出强大的存活能力。使用成熟神经元避免了使用多能 hiPSC 或多能神经干细胞 (NSC) 或间充质干细胞治疗剂的分化挑战。在这篇综述中,我们提供了损伤治疗概述,重点介绍了干细胞和发育领域如何融合,为 SCI 治疗研究生成精确匹配的脊髓运动神经元。创伤对神经元和脉管系统造成的 SCI 微环境的复杂性,以及浸润性炎症细胞和瘢痕形成,构成了治疗细胞遇到的具有挑战性的细胞因子微环境。从临床前到临床试验进展的不断发展但有限的基于干细胞的 SCI 治疗方法概述说明了挑战和对额外的基于干细胞的治疗方法的需求。这里对神经元的关注描述了 NMP 为基础的神经技术如何推进平行策略,如预先形成的神经元电路的移植以及人类原肠胚多细胞模型的躯干中枢和外周神经系统与器官的整合。预计 NMP 衍生的神经元将成为下一代 SCI 治疗的强大驱动力,并与可能利用替代仿生支架进行桥接损伤或柔性可生物降解电子产品进行电刺激的组合疗法很好地整合。