Suppr超能文献

热气泡单细胞打印芯片:高通量、宽视野且高效。

Thermal bubble single-cell printing chip: High-throughput, wide-field, and efficient.

作者信息

Deng Bo, Wang Kun, Huang Peng, Yang Miaomiao, Liu Demeng, Guan Yimin

机构信息

School of Microelectronics, Shanghai University, Shanghai 201800, China.

Shanghai Aurefluidics Technology Co. Ltd, Shanghai 201800, China.

出版信息

Biomicrofluidics. 2024 Nov 26;18(6):064102. doi: 10.1063/5.0225883. eCollection 2024 Dec.

Abstract

Single-cell printing technology has arisen as a potent instrument for investigating cell biology and disease pathophysiology. Nonetheless, current single-cell printing methodologies are hindered by restricted throughput, a limited field of view, and diminished efficiency. We present an innovative single-cell printing chip that utilizes thermal inkjet technology for single-cell printing, therefore addressing these constraints. We have accomplished high-throughput, wide-field, and efficient single-cell printing by merging a high-density thermal foam-based inkjet nozzle array on a chip with high-speed cameras and computer vision technologies for optical image capture and single-cell identification training. We have shown the efficacy and adaptability of the printing chip by printing various concentrations of Chinese hamster ovary cells and human embryonic kidney 293 cells. The printing of a single 96-well plate is accomplished in 2-3 min, facilitating one-time loading and uninterrupted multi-plate paving. Our thermal bubble single-cell printing chip serves as a viable platform for high-throughput single-cell analysis applications.

摘要

单细胞打印技术已成为研究细胞生物学和疾病病理生理学的有力工具。尽管如此,当前的单细胞打印方法受到通量受限、视野有限和效率降低的阻碍。我们提出了一种创新的单细胞打印芯片,该芯片利用热喷墨技术进行单细胞打印,从而解决了这些限制。通过将基于高密度热泡沫的喷墨喷嘴阵列集成在芯片上,并结合高速相机和用于光学图像捕获及单细胞识别训练的计算机视觉技术,我们实现了高通量、宽视野和高效的单细胞打印。我们通过打印不同浓度的中国仓鼠卵巢细胞和人胚肾293细胞,展示了打印芯片的有效性和适应性。单个96孔板的打印在2 - 3分钟内完成,便于一次性加载和连续多板铺板。我们的热泡单细胞打印芯片是高通量单细胞分析应用的可行平台。

相似文献

1
Thermal bubble single-cell printing chip: High-throughput, wide-field, and efficient.
Biomicrofluidics. 2024 Nov 26;18(6):064102. doi: 10.1063/5.0225883. eCollection 2024 Dec.
2
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
3
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
4
Reading aids for adults with low vision.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD003303. doi: 10.1002/14651858.CD003303.pub4.
5
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury.
Cochrane Database Syst Rev. 2016 Jul 1;7(7):CD011020. doi: 10.1002/14651858.CD011020.pub2.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

1
Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications.
J Funct Biomater. 2025 May 8;16(5):166. doi: 10.3390/jfb16050166.

本文引用的文献

1
Development and future of droplet microfluidics.
Lab Chip. 2024 Feb 27;24(5):1135-1153. doi: 10.1039/d3lc00729d.
2
Enhancing single-cell biology through advanced AI-powered microfluidics.
Biomicrofluidics. 2023 Oct 3;17(5):051301. doi: 10.1063/5.0170050. eCollection 2023 Sep.
3
Optical-based microbubble for on-demand droplet release from static droplet array (SDA) for dispensing one droplet into one tube.
Biosens Bioelectron. 2023 Nov 15;240:115639. doi: 10.1016/j.bios.2023.115639. Epub 2023 Aug 25.
4
Biosensors and machine learning for enhanced detection, stratification, and classification of cells: a review.
Biomed Microdevices. 2022 Aug 12;24(3):26. doi: 10.1007/s10544-022-00627-x.
5
Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical, and Diagnostic Applications.
Adv Mater. 2022 Aug;34(31):e2105015. doi: 10.1002/adma.202105015. Epub 2022 Jun 17.
6
Microheater: material, design, fabrication, temperature control, and applications-a role in COVID-19.
Biomed Microdevices. 2021 Dec 3;24(1):3. doi: 10.1007/s10544-021-00595-8.
7
Inner Surface Design of Functional Microchannels for Microscale Flow Control.
Small. 2020 Mar;16(9):e1905318. doi: 10.1002/smll.201905318. Epub 2019 Dec 3.
8
Machine learning approach of automatic identification and counting of blood cells.
Healthc Technol Lett. 2019 Jul 17;6(4):103-108. doi: 10.1049/htl.2018.5098. eCollection 2019 Aug.
9
Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level.
Anal Chem. 2019 Aug 6;91(15):9970-9977. doi: 10.1021/acs.analchem.9b01708. Epub 2019 Jun 26.
10
Deep learning for cellular image analysis.
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验